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Abstract—In the near future, electric vehicles (EVs) will play 

an important role in the automobile industry, because they can 

reduce CO2 emissions and the use of fossil fuel. The largest 

challenge in popularizing EVs is the charging infrastructure. A 

potential solution is a distributed battery-swapping network,  

where depleted batteries are replaced at swapping stations. 

Then, the uncharged batteries are refilled at district-charging 

centers and sent back to battery-swapping stations. In this 

study, we study the problem of allocating charging centers in 

distributed battery-swapping networks and propose solving it 

using genetic algorithms. Through numerical examples, we 

illustrate the effectiveness of our proposed algorithm. 

 
Index Terms—Electric vehicle, distributed battery-swapping 

network, charging center allocation, genetic algorithm.  

 

I. INTRODUCTION 

Electric vehicles (EVs) are a promising technology that 

drastically reduces the environmental burden of road 

transportation. Specifically, they can reduce CO2 emissions 

of passenger cars and light commercial vehicles, as well as 

emissions of pollutants and noise.  

However, EVs are still far from proven technology. In 

particular, there exist many uncertainties with respect to 

crucial issues such as [1]: 

1) Battery technology (energy capacity in relation to 

vehicle range and charging speed). 

2) Durability, availability, and environment (impacts of 

materials). 

3) Well-to-wheel impacts on emissions. 

4) Interaction with electricity generation. 

5) Cost of a business model in large-scale cases. 

Among these issues, battery technology is considered as 

the most important one. A solution that was proposed to 

address it is a battery swap system, where drivers simply 

drive to a swapping station and swap a depleted battery with a 

full one. The battery-swapping operation only takes a few 

minutes. The advantages of a swapping system are (a) 

extending the driving range of EVs, (b) reducing the initial 

cost to buy an EV, and (c) upgrading batteries without 

additional cost. Several companies, such as the Better Place 
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Company, are implementing this business model in the 

United States, Japan, and other countries [2].  

The distributed battery-swapping network (DBSN) is a 

larger-scale version of the battery-swapping system. The 

largest power company in China, State Grid Corporation, in 

conjunction with other power companies is promoting this 

network in China. In a DBSN, depleted EV batteries are 

replaced at battery-swapping stations, which are then sent to 

district-charging centers. When the depleted batteries are 

refilled, they are sent back to battery-swapping stations.  

In [3], He et al. studied the problem of allocating charging 

centers in DBSNs. They formulated the problem as a 

mathematical model and proposed its solution by using 

particle swarm optimization (PSO). However, the solution 

obtained in their numerical example was not feasible. Hence, 

it is not clear if PSO effectively solves this model. 

In this study, we use the same mathematical model as in [3] 

and propose a solution using a genetic algorithm (GA). 

Numerical results show that if we are careful when 

generating the initial solutions, the GA can solve the model 

effectively. In addition, we conduct comprehensive 

numerical tests to obtain insights on planning a network in 

practice. 

The remainder of this paper is organized as follows: we 

introduce some related literature in Section II. We describe 

the formulation of the mathematical model of allocation 

problem in Section III.  In Section IV, we briefly introduce 

the genetic algorithm and discuss how to code chromosome 

to solve our problem. Then, we evaluate the performance 

through numerical experiment (Section V). In Section VI, we 

present our conclusions and possible future studies. 

 

II. LITERATURE REVIEW 

In [1], the authors discuss important issues in logistic 

planning for EVs, such as battery management, battery 

supply chain, battery-charging services and recycling 

regulations. The authors of [4] provide some statistics about 

the fuel economy of EVs, which are useful when 

implementing numerical tests. Liu and Guo [5] discuss 

factors that affect the popularization of EVs and formulate a 

simulation model, which they use to forecast their popularity. 

Their results predict that the automobile market will be 

gradually overtaken by EVs. They conclude that during the 

electrification of transportation, EVs will have a large impact 

in energy saving. In [6], Zhang et al. compare gasoline cars 

with EVs and propose a planning model for the charging 

facilities of EVs. 

The study presented in [3] discusses the problem of 

allocating charging centers in DBSNs and forms the basis of 

our study. According to the State Grid Corporation of China, 
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which is a proactive promoter of DBSNs, the concept of 

DBSNs is “Replacing batteries is primary, charging is 

complementary, charging concentrated, distributing unified” 

[7]. In DBSNs, the allocation of charging centers directly 

affects the collection/distribution cost of batteries. The 

authors of [3], under the assumptions that the positions of the 

swapping stations and the maximum supply of electricity of 

charging centers are given, formulated a mathematical model 

for this problem. Then, they solved the model using a discrete 

PSO. In Fig. 1, we present a flowchart of the procedure used 

to obtain the optimal solution. However, the “optimal” 

solution obtained in their numerical example is infeasible. 

In this study, we investigate the same problem formulated 

in [3]. However, instead of using PSO to determine the 

locations of the battery-charging centers in the DBSN, we 

apply the GA. 

 

III. MODEL FORMULATION 

In this section, we formulate the optimal allocation 

problem in a mathematical model. The model is the same as 

that used in [3].  

A. Number of Charging Centers 

Assume that the information about the battery swapping 

stations is provided. First, we need to determine the number 

of charging centers in the DBSN. Let n be the number of 

swapping stations and ),...,3,2,1( niVi   be the demand for 

electric power for station i. The daily electric power a 

charging center can supply is denoted by max . Then, the 

number of charging centers, m, required is obtained by 
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Fig. 1. Flowchart of procedure used to obtain the optimal solution. 

where the operator [x]+ designates the smallest integer greater 

than or equal to x. Next, we need to assign the n swapping 

stations to the m charging centers. 

B. Locations of Charging Centers 

Assume that we have assigned the battery-swapping 

stations to the charging centers. Then, we can use the center 

of gravity to determine the locations of the charging centers 

[3]. 

The coordinates of the locations of the battery-swapping 

stations are ),(),...,,(),,(),,( 332211 nn yxyxyxyx . Let jW  

represent charging center j. We use }1,0{ji  

( nimj  , ) to denote the number of assignments of 

battery-swapping stations to charging centers. Specifically, if 

station i is assigned to charging center j, 1ji ; otherwise 

ji = 0. 

By applying the center-of-gravity idea to the electric 

power and locations of the battery-swapping stations, we can 

obtain the locations of charging centers as follows:  
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where ),( jj vu  are the coordinates of the charging center j. 

 

C. Objective Function 

Here we only consider the transportation cost between 

swapping stations and charging centers. The construction 

cost of the charging centers is neglected. Therefore, to obtain 

the optimal assignment between battery-swapping stations 

and charging centers, we use the following objective 

function: 
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IV. GENETIC ALGORITHM 

In this section, we briefly introduce the basic idea of GAs 

and describe the genetic representation used in this study 

(subsection B). Moreover, we discuss how to construct the 

initial solutions to obtain the optimal solution more 

effectively (subsection C). 

A. Introduction to GAs 

The GA is an “intelligent” heuristic search algorithm that 

can be applied to various combinatorial optimization 

problems. The GA emulates Darwin‟s principle of natural 

selection, i.e., during the course of evolution, natural 

populations evolve according to the principle of natural 

selection and „survival of the fittest‟. Individuals that are 

more successful in adapting to their environment have a 
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better chance of surviving and reproducing, whereas 

individuals that are less fit are eliminated. The GA process is 

described in Fig. 2. 

 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 2. Genetic algorithm process. 

 

B. Genetic Representation 

When solving a problem using a GA, it is important to 

design the appropriate genetic representation of solutions. In 

this study, we use the following coding scheme to represent 

solutions. 

Assume that battery stations 1, 2, 3, 4, 5, 6,…, n are 

assigned to W1, W1, W2, W1, W3, W3,…, W2, respectively. 

Hence, 1W  (charging center 1) supplies batteries to stations 

1, 2, and 4, 2W  supplies batteries to stations 3 and n, and 3W  

supplies batteries to stations 5 and 6. Therefore, the 

chromosome that represents this solution is )2...112133( .  

The advantage of this representation is that it ensures ther 

assignment of every battery-swapping station to exactly one 

charging center. The disadvantage is that it allows the 

generation of infeasible solutions. In particular, if the 

constraints are stringent, this representation will generate a 

large number of infeasible solutions. 

C. Improved Initialization Procedure for GA 

In the next section, we show that the constraints applied to 

the assignment of battery-swapping stations are not flexible. 

Therefore, if we randomly generate initial solutions, a large 

number of them will be infeasible, and consequently, we may 

not be able to obtain the optimal solution. To avoid this 

problem, we propose generating initial solutions as follows: 

Step 1: Randomly select j (j =1, 2, …, m) and sort the 

charging centers in the order j, j + 1, …, m, 1, 2,…, j − 1. 

Step 2: Randomly select i (i =1, 2, …, n) and sort the 

swapping stations in the order i, i+1, …, n, 1, 2,…, i − 1. 

Step 3: Assign swapping station i to Wj. 

Step 4-1: Calculate the demand for electric power for Wj. 

Step 4-2: If the electric power required by Wj does not 

exceed the electric power limit, assign station i to Wj. 

Otherwise, re-assign station i to the next unassigned center. 

Step 4-3: Repeat Steps 2 to 4-2 for all swapping stations. 

Step 5: Select the next charging center and go to Step 3. 

Repeat Step 5 for all centers. 

Step 6: If more initial solutions are required, go to Step 1. 

Using this algorithm, we generate only feasible initial 

solutions. As a result, the GA converges faster and obtains 

better solutions. 

 

V. NUMERICAL RESULTS 

In this section, we conduct numerical simulations to test 

our proposed algorithm. First, we compare our algorithm 

against the numerical example presented in [3]. Then, we 

conduct a comprehensive test to investigate the sensitivity of 

our algorithm and obtain insights on planning a network. 

A. Case 1 

In this test, we consider the example used in [3]. Assume 

that a certain district contains 22 battery-swapping stations. 

The locations and electric power requirements of each 

battery-swapping station are listed in Table I. Moreover, the 

maximal electric power supplied from each charging center is 

set to max = 7000 kWh. 

We apply the GA optimization technique to solve this 

model. The GA parameters used are as follows: population 

size = 100, number of generations = 10000, number of 

crossover points = 2, mutation rate = 0.05. 

Table II shows the results obtained for the locations and 

assigned stations of each charging center. The number of 

charging centers is 4 (m = 4), and the optimal value of the 

objective function is C = 445.05. In Fig. 3, we plot the 

locations of the charging centers listed in Table II. 

 

TABLE I: LOCATIONS AND DEMANDS FOR ELECTRIC POWER OF EACH 

BATTERY-SWAPPING STATION (BSS) FOR CASE 1 

BSS ID Location Electric Power (kWh) 

1 34.50 95.47 1260 

2 41.03 87.32 960 

3 22.34 81.20 1200 

4 51.67 78.32 960 

5 44.37 76.37 1080 

6 27.87 65.59 960 

7 63.24 72.37 900 

8 18.72 62.94 1200 

9 68.12 58.32 960 

10 21.32 33.83 1230 

11 77.35 42.86 960 

12 33.13 33.19 960 

13 35.17 31.10 1200 

14 53.17 33.17 1020 

15 52.17 42.19 1200 

16 40.32 75.73 1440 

17 55.39 32.17 1440 

18 14.30 35.47 1500 

19 28.32 61.70 1920 

20 44.12 17.36 1440 

21 18.45 9.30 1470 

22 83.24 52.35 1920 
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TABLE II: GA RESULTS FOR LOCATIONS OF CHARGING CENTERS AND 

ASSIGNMENTS OF BATTERY-SWAPPING STATIONS FOR CASE 1 

Charging 

Center ID 
Location 

Assigned battery-swapping 

stations 

1 36.11 31.33 9,10,12,13,14,21 

2 25.07 61.90 3,5,8,18,19 

3 42.18 79.43 1,2,4,6,7,16 

4 63.21 37.87 11,15,17,20,22 

 

In Fig. 4, we compare the convergence of GA with and 

without the improved initialization procedure presented in 

subsection V-C. In this example, we see that if we do not use 

the improved initialization procedure, GA does not obtain the 

optimal solution. Hence our initialization algorithm is quite 

effective. 

B.  Case 2 

In this case, we test the performance of our proposed 

algorithm by varying the number of battery-swapping 

stations. 

First, we perform a numerical tested with 40 stations. 

Similar to Case 1, the locations and electric power 

requirements of each battery-swapping station are given. 

Similarly, the maximal electric power supplied by each 

charging center is set to max  = 7000 kWh. For this test, we 

use the following GA parameters: population size = 1000, 

number of iterations = 20000, number of crossover points = 2, 

mutation rate = 0.05. 

Table III shows the result obtained for the locations and 

assigned stations of each charging center. In this case, the 

number of charging centers is 8 (m = 8), and the optimal 

value of the objective function is C = 598.96.  

In the next test performed, we varied the number of 

battery-swapping stations from 15 to 80. The GA parameters 

used are as follows: population size = 100, number of 

iterations = 10000, number of crossover points = 2, mutation 

rate = 0.05. From Fig. 5, we see that the run time of GA 

increases approximately linearly to the number of stations. 

C. Case 3 

In this test, we add an additional charging center to the 

problem. Hence, we effectively relax the constraints of the 

model. Next, we compare the transportation cost with that of 

the original case (Case 1). 

In this test, we use the same number of battery-swapping 

stations, locations and battery requirements of each swapping 

station and the maximal electric power of each charging 

center as in Case 1. The only difference is, instead of using 

(1) to compute the number of charging centers, we use 
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Table IV shows the GA result for the locations and 

assigned stations of each charging center. In this case, the 

number of charging centers is 5 (m = 5), and the optimal 

value of the objective function is C = 274.96 (i.e., 61% of the 

value obtained in Case 1). This implies that the addition of 

one charging center reduces the transportation cost by 1/3. 

 
Fig. 3. Locations of charging centers and swapping stations for Case 1. 

 

 
Fig. 4. Convergence performance of GA for Case 1. 

 
TABLE III:  GA RESULTS FOR LOCATIONS OF CHARGING CENTERS AND 

BATTERY-SWAPPING STATION ASSIGNMENTS FOR CASE 2 

Charging 

Center 

ID 

Location 
Assigned battery-swapping 

stations 

1 92.55 67.17 27,28,30,38, 

2 56.99 44.04 7,9,14,15,17,25, 

3 65.26 88.47 4,23,32,35,37, 

4 36.60 82.47 1,2,3,5,16, 

5 33.59 14.37 20,21,31,34,36, 

6 36.94 34.59 10,12,13,26,29, 

7 21.35 60.58 6,8,18,19,39, 

8 78.45 51.12 11,22,24,33,40, 

 

 
Fig. 5. Run time of GA as a function of the number of stations. 

 

By comparing the transportation cost of Case 3 with that in 

Case 1, we can extract additional information that could be 
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useful for location planning in DBSNs. In particular, in 

addition to transportation costs, our objective function could 

account for the construction costs of charging centers and be 

used to determine the optimal number of charging centers for 

a DBSN. 

 
TABLE IV: GA RESULTS FOR LOCATIONS OF CHARGING CENTERS AND 

ASSIGNMENTS OF BATTERY-SWAPPING STATIONS FOR CASE 3. 

Charging 

Center 

ID 

 Location 
Assigned battery-swapping 

stations 

1 24.70 67.12 3, 6, 8, 19 

2 75.19 55.44 7, 9, 11, 22 

3 41.71 82.07 1, 2, 4, 5, 16 

4 23.40 27.94 10, 12, 13, 18, 21 

5 51.01 30.55 14, 15, 17, 20 

 

VI. CONCLUSIONS 

In this study, we studied the optimal allocation problem of 

charging centers for EVs in a DBSN and solved it using a GA. 

Numerical results showed that if we carefully select the initial 

solutions, our proposed algorithm is effective. Furthermore, 

we performed several numerical simulations to obtain 

insights on planning a network.  

When we use only feasible initial solutions, our GA tends 

to generate more feasible solutions. However, the crossover 

and mutation operations in each generation produce several 

infeasible solutions. Hence, we could improve our algorithm 

by reducing the number of infeasible solutions generated in 

each generation.  

As a future study, we could also improve our algorithm by 

considering other types of costs in our objective function, 

such as construction cost. This enhancement would make our 

approach more useful in practical situations. 
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