

 

Abstract—Testing of integrated circuits (IC’s) is of crucial 

importance to ensure a high level of quality in product 

functionality in both commercially and privately produced 

products. Due to complex systems, its very difficult to test it. 

One solution to this problem is to add logic to the IC so that it 

can test itself. This is referred to as “Built in self Test” (BIST). 

In this work, we are designing BIST controller which will 

detect and correct errors while computing  greatest common 

divisor (gcd) of two non-negative integers using two 

approaches i.e Euclid’s algorithm and Stein’s algorithm and 

comparing the results of both approaches , that we are using in 

this work. The most efficient way that will come can use for the 

applications for finding gcd.  

 

Index Terms—Build-in-self-test(BIST), Euclid’s algorithm, 

Stein’s algorithm, VLSI testing.  

 

I. INTRODUCTION 

As integrated circuits are produced with greater and 

greater levels of circuit density, efficient testing schemes 

that guarantee very high fault coverage while minimizing 

test costs and chip area overhead have become essential. As 

the complexity of circuits continues to increase, high fault 

coverage of several types of fault models becomes more 

difficult to achieve. In this project, we are designing BIST 

controller which helps for detecting and correcting errors, as 

it is very difficult to detect errors in such a complex digital 

systems now a days. Also, we are implementing two 

algorithms, Euclid‟s and Stein‟s which will helps for 

calculating greatest common divisor (gcd) of two non-

negative integers. This algorithms will then be very useful 

for applications such as data security, cryptography etc. and 

so on. 

A. Built-In Self Test(BIST) Controller 

Built-In Self Test(BIST) [1] is a technique of integrating 

the functionality of an automatic test system onto a chip. It 

is a Design for Test technique in which testing (test 

generation and test application) is accomplished through 

built in hardware features.  

On-line BIST [2] refers to testing which occurs during 

normal operation of the IC. Examples of this kind of BIST 

often have to do with functional testing such as Error 

Detecting/Error Correcting (ED/EC) codes or on chip 

 
Manuscript received December 14, 2012; revised February 17, 2013. 

Sachin D. Kohale is a Post-Graduate Student with the Dept. of 

Computer Science and Engineering, G.H.Raisoni College of Engineering, 
Hingna Road, Nagpur, Maharashtra, India (e-mail: sdk_pz@yahoo.com).  

Ratnaprabha. W. Jasutkar is a Assistant Professor with the Dept. of 

Computer Science and Engineering, G.H.Raisoni College of Engineering, 

Hingna Road, Nagpur, Maharashtra, India (e-mail: 

ratnaprabhajasutkar@gmail.com). 

electrical monitoring. Off-line operation occurs during a 

specified period when the CUT is idle. This operation 

occurs often over the period of multiple clock cycles and is 

usually intended to operate during a dedicated testing 

period. 

The Basic block diagram of BIST architecture is shown 

below. 

 
Fig. 1. Basic BIST architecture block diagram  

 

II. METHODOLOGIES USED 

A. Euclid’s Algorithm   

In mathematics, the Euclidean algorithm (also called 

Euclid's algorithm) [3] is an efficient method for computing 

the greatest common divisor (GCD) of two integers, also 

known as the greatest common factor (GCF) or highest 

common factor (HCF). In its simplest form, Euclid's 

algorithm starts with a pair of positive integers and forms a 

new pair that consists of the smaller number and the 

difference between the larger and smaller numbers. The 

process repeats until the numbers are equal. That number 

then is the greatest common divisor of the original pair. The 

GCD of two numbers is the largest number that divides both 

of them without leaving a remainder. The Euclidean 

algorithm (5) is based on the principle that the greatest 

common divisor of two numbers does not change if the 

smaller number is subtracted from the larger number. For if 

k, m, and n are integers, and k is a common factor of two 

integers A and B, then A = (n × k ) and B = ( m × k ) implies 

A – B = ( n – m ) × k , therefore k is also a common factor of 

the difference. That k may also represent the greatest 

common divisor is proven below. For example, 21 is the 

GCD of 252 and 105 

(252 = 12 × 21;105 = 5 × 21)(4);since252 − 105 = (12-

5) × 21 = 147, the GCD of 147 and 105 is also 21 [4]. 

Since the larger of the two numbers is reduced, repeating 

this process gives successively smaller numbers until one of 

them is zero. When that occurs, the GCD is the remaining 

nonzero number. By reversing the steps in the Euclidean 

algorithm, the GCD can be expressed as a sum of the two 

original numbers each multiplied by a positive or negative 

Fpga Based Implementation of Bist Controller Using 

Different Approaches 

Sachin D. Kohale and Ratnaprabha. W. Jasutkar  

110DOI: 10.7763/IJMMM.2013.V1.24

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Remainder
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Linear_combination


integer, e.g., 21 = [5 × 105] + [(−2) × 252]. This important 

property is known as Bézout's identity 

Basically Euclid algorithm [3] can be described as  

 

                              gcd( a , 0 ) = a                                     (1) 

 

                    gcd( a , b ) = gcd( b , a mod b )                     (2) 

 

If arguments are both greater than zero, then 

 

                            gcd( a , a ) = a                                       (3) 

 

                  gcd( a , b ) = gcd( a - b , b ) ; if b < a              (4) 

 

                 gcd( a , b ) = gcd( a , b - a ) ; if a < b               (5) 

Ex. gcd( 20, 20 ) is 20 (3). Also, gcd( 20, 40 ) is same as 

calculating gcd( 20 , ( 40–20 ) ) (5) is again gcd( 20, 20 ) (3). 

B.  Stein’s Algorithm  

The binary GCD algorithm, also known as Stein's 

algorithm [5], is an algorithm that computes the greatest 

common divisor of two nonnegative integers. It gains a 

measure of efficiency over the ancient Euclidean algorithm 

by replacing divisions and multiplications with shifts, which 

are cheaper when operating on the binary representation 

used by modern computers. This is particularly critical on 

embedded platforms that have no direct processor support 

for division. Basically Stein‟s algorithm can be described as 

 

                                    gcd( 0 , v ) = v                               (6) 

                                    gcd( u , 0 ) = u                               (7) 

 

gcd( 0 , 0 ) = 0                                (8) 

 

If u and v are both even, then  

gcd( u , v ) = 2.gcd( u/2 , v/2 )                (9) 

If u is even and v is odd, then 

                                gcd( u , v ) = gcd( u/2 , v )                (10)  

 Similarly u is odd and v is even then  

                              gcd( u , v ) = gcd( u , v/2 )                  (11) 

If u and v are both odd and u is ≥ v, then 

                         gcd ( u , v ) = gcd( ( u – v )/2 , v )           (12) 

 If both are odd and u < v, then 

                       gcd( u , v ) = gcd( ( v – u )/2 , u )              (13) 

For ex. gcd( 0, 22 ) is 22 (6). Also, gcd( 33, 0 ) is 33 (7). 

Similarly, gcd( 21, 22 ) is same as gcd( 21, 11) (11). Also, 

gcd( 21, 41 ) is same as gcd( (41-21) /2 , 21 ) is again same 

as gcd( 10, 21 )(13). 

 

III. SIMULATION RESULTS 

A. Euclid’s Algorithm with BIST Features (4-bit 

Input) 

 

Fig. 2. Implementation of Euclid‟s Algorithm with BIST features with 4-bit input data 

 

B. Euclid’s Algorithm with BIST Features(8-Bit Input) 

Fig. 3. Implementation of Euclid‟s Algorithm with BIST features with 8-bit input data 

 

111

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013

http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Euclidean_algorithm


C. Stein’s Algorithm with BIST Features (4-Bit Input) 

Fig. 4. Implementation of Stein‟s Algorithm with BIST features with 4-bit input data 

 

D. Stein’s Algorithm with BIST Features (8-Bit Input) 

Fig. 5. Implementation of Stein‟s Algorithm with BIST features with 8-bit input data 

 

Fig. 2 and Fig. 3 shown above shows the 

simulation results of finding gcd of two numbers taking 4-

bit input and 8-bit input respectively using Euclid‟s 

algorithm with BIST technique [6]-[8]. 

The following are the signals that we are using in it is: 

clk:- For counting how many clock cycles it is needed to 

get expected output. 

reset:- It is for resetting the circuitry. 

bist_out:- It is signal when at logic 1,which indicates that  

we are getting correct gcd output. 

gcd:- It is the signal for gcd output which is considered to 

be as reference. 

gcd1:- It is the signal for gcd output which is same as 

output of gcd signal, when bist_out = 1. 

data1 and data2:- It is the signal which is having 16 bit 

data input for gcd calculations. 

load:- It is the signal using for loading respective data 

input. 

The data inputs are being generated continuously for 

infinite clock cycles. It is being achieved using Linear 

Feedback Shift Register(LFSR). 

Fig. 4 and Fig. 5 shown above shows the simulation 

results of finding gcd of two numbers taking 4-bit input and 

8-bit input using Stein‟s algorithm [5] with BIST technique. 

load:- It is the signal when „1‟ , indicates instant at which 

data  is being loaded and gcd of the respective loaded data‟s 

is being calculated. 

done and done1:- It is the signal when logic „1‟ , indicates 

that gcd is being calculated and the output is being 

compared with referenced output. 

Built In Self Test(BIST) is the technique which will test 

the circuit by itself. In both algorithms, we have taken 

reference processor assuming that it is giving exact expected 

results. Using that reference processor, we are now 

comparing the output results and performance of remaining 

processors. This indirectly saves testing time and also costs. 

 

IV. LINEAR FEEDBACK SHIFT REGISTERS(LFSR) 

 

Fig. 6. Conventional LFSR  

 

Linear Feedback Shift Register(LFSR) [4] is a circuit 

consisting of flip-flops connected in series with each other. 

The output of one flip-flop is connected to the input of the 

next flip flop and so on. The feedback polynomial which is 

also known as the characteristic polynomial is used to 

determine the feedback taps which in turn determines the 

length of the random pattern generation. 

 

V. EUCLID‟S ALGORITHM  vs STEIN‟S ALGORITHM 

A. Number of Look Up Tables(LUT’s) Used for 4-Bit 

Input Data  

112

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013



TABLE I: LUT‟S USED FOR 4-BIT INPUT 

Device XC3S50 XC4VFX12 XC6SLX4 

Euclid‟s 

without  

BIST 

93 92 

 

16 

 

Euclid‟s 

with 

BIST 

193 193 21 

Stein‟s 

without 

BIST 

37 36 34 

Stein‟s 

with 

BIST 

76 40 36 

 

B. Number of Look Up Tables(LUT’s) Used for 8-Bit 

Input Data  

 

TABLE II: LUT‟S USED FOR 8-BIT INPUT 

Device XC3S50 XC4VFX12 XC6SLX4 

Euclid‟s 

without  

BIST 

819 800                             

 

685 

 

Euclid‟s 

with BIST 
1613 1613 1397 

Stein‟s 

without 

BIST 

37 36 34 

Stein‟s with 

BIST 
76 40 36 

 

VI. CONCLUSION 

In this paper, GCD processor is being implemented using 

Euclid algorithm and Stein‟s algorithm with BIST features. 

In the next stage , we are comparing the performance of 

both algorithms in terms of no. of look up tables used 

separately for 4-bit and 8-bit input data and finding out the 

conclusion that which algorithm is working better while 

calculating greatest common divisor (gcd) of two non-

negative integers.  

After comparing performance of different devices like 

XC3S50 , SC4VFX12 and XC6SLX4, it can be noted that 

the number of look-up tables(LUT‟s) needed for 4-bit and 8-

bit data input is less for XC6SLX4 device as compared with 

other devices. So, XC6SLX4 device is more efficient as 

compared with other devices and faster for computing 

greatest common divisor(gcd). 

This technique is more useful in applications like 

Cryptography , Data security and sharing etc. and so on. 

REFERENCES 

[1] S. Jamuna and V. K. Agrawal, “VHDL Implementation of BIST 

Controller,” in Proc. of int. Conf. on Advances in Recent 

Technologies in Communication and Computin, pp. 188-190, 2011. 

[2] R. S. Oliveira, J. Semiao, I. C. Teixeira, M. B. Santos, and J. P.  

Teixeira, “On-line BIST for Performance Failure Prediction under 

Aging Effects in Automotive Safety-Critical Applications,” IEEE, 

2011. 

[3] R. Devi, J. Singh, and M. Singh, “VHDL implementation of GCD 

Processor with Built in Self Test Feature,” International Journal of 

Computer Applications (0975 – 8887), vol. 25, no. 2, pp. 50-54, July 

2011. 

[4] P. Nayineni and S. K. Masthan, “Power optimization of BIST circuit 

using low power LFSR,” International Journal of Computer Trends 

and Technology, vol. 2, Issue 2, pp. 5-8, 2011. 

[5] G. Purdy, C. Purdy, and K. Vedantam, “Two Binary Algorithms for 

Calculating the Jacobi Symbol and a Fast Systolic Implementation in 

Hardware,” IEEE, 2006.  

[6] Z. H. Yu and L. H. Yun, “A BIST Scheme to Test Static Parameters 

of ADCs,” IEEE Symposium on Electrical & Electronics Engineering 

(EEESYM), 2012. 

[7] N. Mukherjee, A. Pogiel, J. Rajski, and J. Tyszer, “BIST-Based Fault 

Diagnosis for Read-Only Memories,” IEEE transactions on 

computer-aided design of integrated circuits and systems, vol. 30, no. 

7, July 2011. 

[8] K. Kobayashi, N. Takagi, and K. Takagi, “Fast inversion algorithm in 

GF(2m) suitable for  implementation with a polynomial multiply 

instruction on GF(2),” IET Computers & Digital Techniques Received 

on 25th January 2010 Revised on 1st February, 2012. 

 

 

Sachin D. Kohale received Bachelor of Engineering 

(B.E.) degree in Electronics from K. D. K. College of 

Engineering, Nagpur, Maharashtra, India in 2008. He 

is pursuing Master of Engineering (M.E.) in 

Embedded System and Computing (ESC) from G. H. 

Raisoni College of Engineering, Nagpur, 

Maharashtra, India. His research area includes 

designing gcd processor performance comparison of 

Algorithms used for designing gcd processor and also 

designing digital logic circuit. 

 

 

 

Ratnaprabha W. Jasutkar received Master of 

Technology (M.Tech.) degree in VLSI Design from 

R. K. N. E. C., Nagpur, Maharashtra, India. Presently, 

she is pursuing Ph.D. in the field of Mixed Signal 

VLSI. She is also working as Assistant Professor in 

Computer Science and Engineering Dept. in G.H. 

Raisoni College of Engineering, Nagpur. Her research 

area includes Mixed Signal VLSI , VLSI Testing , 

Embedded System & Wireless Networks etc. 

 

 

 

113

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013


