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Abstract—Natural convection of air in an inclined square 

enclosure was numerically investigated. The left and right walls 

of the enclosure were maintained at the uniform hot and cold 

temperatures, respectively, while the top and bottom walls were 

adiabatic. The enclosure was filled with real air, a compressible 

Newtonian fluid. The finite volume method was employed to 

discretize the partial differential equations of airflow in the 

enclosure. The angles of the inclination of a square enclosure 

giving the maximum average Nusselt numbers are   110
o
 for Ra 

= 110
3
 and   130

o
 for 310

3  Ra 110
4
. 

 
Index Terms—Finite volume method, Inclined square 

enclosure, natural convection, real air. 

 

I. INTRODUCTION 

Natural convection is a phenomenon occurred in many 

engineering applications which the consequence is the flow 

of air near the surfaces of the solids or liquids such as the 

airflow in double pane windows, the airflow in double 

glazing doors of display refrigerators and the airflow in gaps 

or cavities of building walls. To understand clearly, a lot of 

researchers have devoted to investigate this phenomenon in 

order to enhance or reduce this mode of heat transfer. 

There is a lot of literature describing about the natural 

convection phenomenon in the enclosures in the different 

conditions. De Vahl Davis [1] reported an accurate solution 

of the equations depicting two-dimensional natural 

convection in a square cavity with differentially heated side 

walls. A Boussinesq fluid with Prandlt number 0.71 was 

employed for the laminar flow in the upright cavity. 

Furthermore, the laminar and turbulent flow in an upright 

square cavity was investigated by Barakos, Mitsoulis and 

Assimacopoulos [2]. Both of a Boussinesq fluid and air 

which the properties dependent on the  temperatures were 

considered by Agrawal, Ali, Velusamy and Das [3]. They 

also carried out a correlation for heat transfer during laminar 

natural convection in an enclosure containing uniform 

mixture of air and hydrogen. Chen and Chung [4] performed 

in a different geometry inclined arc-shape cavity filled with 

the Boussinesq fluid. Al-Farhany and Turan [5] investigated 

natural convective heat and mass transfer in an inclined 

rectangular cavity filled with porous medium. The fluid 

density in the porous medium is described by the Boussinesq 
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approximation. And the other authors [6]-[14] that 

investigated the natural convection in the cavities in the 

different conditions also considered the fluids in the cavities 

to be as the Boussinesq fluid. 

From the above review of literature, the study of airflow in 

an enclosure with differentially heated walls is preliminary 

for understanding in the natural convection phenomenon. 

Real air filled in an enclosure which the properties are 

dependent on the temperatures and pressures has not been 

numerically investigated. Therefore the aim of this work is to 

investigate numerically the natural convection of the laminar 

airflow in an inclined square enclosure filled with real air. In 

addition, an in-house code was developed for this purpose. 

 

II. PROBLEM STATEMENT AND MATHEMATICAL MODEL 

The geometry of the problem under consideration is shown 

in Fig. 1. The square enclosure has a width and height of b. 

The angles between the enclosure and the horizontal line are 

 . The hot temperature side is designated by TH and the cold 

temperature side is designated by TC. The other sides are well 

insulated. The enclosure is contained with air. 
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Fig. 1. Geometry of the problem. 

 

Because of the temperature difference between the 

opposite sides of the enclosure, the air circulation and the 

natural convection occurs in the enclosure. The governing 

equations of the airflow in the enclosure are defined by the 

continuity, momentum and energy equations. The equations 

at the steady-state condition for a compressible Newtonian 

fluid are expressed as the following [15]: 

 The continuity equation 

  0 V          (1) 

 The momentum equation in x direction 

    MxSgu
x

P
Vu 




  cos    (2) 
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 The momentum equation in y direction 
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P
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
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 The energy equation 

     TkVPVi      (4) 
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The appropriate boundary conditions for the airflow in the 

enclosure are: 

 at x = 0, 0 < y < b 

u = v = 0 , T =TH , 0




x

P  

 at x = b, 0 < y < b 

u = v = 0 , T =TC , 0




x

P  

 at 0  x  b , y = 0 and y = b 

u = v = 0 , 0




y

T  , 0




x

P  

All properties of air in the enclosure are functions of the 

temperatures and pressures. The air properties are obtained 

from NIST (National Institute of Standards and Technology) 

Standard Reference Database 23, Version 9.0 by the 

polynomial curve fitting. The air properties can be obtained 

from 
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where  are the variables of density, thermal conductivity, 

viscosity and specific internal energy, amn are the polynomial 

curve fitting coefficients, and T and P are the absolute 

temperatures and pressures of air in the enclosure, 

respectively. The coefficients of determination (R2) of the air 

properties received from the polynomial curve fitting are 

more than 0.9990. For all air properties, m and n are 10. 

 

III. NUMERICAL METHOD 

The continuity, momentum and energy equations for the 

simulations of airflow in the enclosure are numerically 

solved according to their boundary conditions. The finite 

volume method is employed to discretize the equations of the 

airflow. The PISO (Pressure Implicit with Splitting of 

Operators) algorithm is adopted to solve the velocity-pressure 

coupling problem of the airflow. The hybrid differencing 

scheme is used to discretize the convective and diffusive terms 

of the transport equations. The TDMA (Tri-Diagonal Matrix 

Algorithm) is used to solve the matrix systems. In the 

numerical procedures, the iteration processes have to be used 

to obtain the convergent solutions. Consequently, a 

convergence criterion is established to monitor the maximum 

relative difference of the velocities, temperatures and 

pressures in two successive iterations. The maximum relative 

difference must be less than 10-4, MAX  ( iter -  iter-1) /  iter  

 10-4, with  = u, v, T, P. A summary of the numerical 

procedures is: 

1) The initial guessed values for all of the variables are 

imposed. 

2) The continuity and momentum equations of air in the 

enclosure are solved under the PISO algorithm to obtain 

velocity and pressure fields. 

3) The energy equations of air in the enclosure are solved 

to obtain the temperature distribution. 

The convergence criterion is applied for all of the 

variables. If all of the variables do not meet the convergence 

criterion, it must return to step 2, until the convergence 

criterion is achieved. 

 

IV. CODE VALIDATION 

The validity of the in-house code is demonstrated by 

comparing its results with a benchmark numerical solution of 

De Vahl Davis [1] for natural convection of air in a square 

cavity with differentially heated vertical walls and adiabatic 

horizontal walls. The in-house code was run at  = 90o for the 

comparison. 

The Nusselt numbers at any points on the vertical planes in 

the enclosure excluded thermal radiation is given by 

ref

convcond

q

qq
Nu


          (6) 

where qcond, qconv and qref are the conductive, convective and 

reference heat flux, respectively. The conductive, convective 

and reference heat flux is calculated as: 

x

T
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where kA and h are the thermal conductivity and enthalpy 

values of air, respectively. 

The average Nusselt number on a vertical plane can be 

written as 


b

ave dyNu
b

Nu
0

1
        (10) 

The average Nusselt number throughout the enclosure is 

given by 


b

ave dxNu
b

Nu
0

1
       (11) 

132

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013



  

The non-dimensional velocities and coordinates in 

horizontal and vertical directions are expressed as: 

b

u
u


*  , 

b

v
v


*      (12) 

b

x
x *  , 

b

y
y *            (13) 

The comparisons between the solution of the in-house 

code and the benchmark numerical solution at Ra = 103 and 

Ra = 104 are shown in TABLE I. The difference between the 

solution of the in-house code and the benchmark numerical 

solution is very small, which gives credence to the in-house 

code. 

 
TABLE I: COMPARISONS BETWEEN THE SOLUTION OF THE IN-HOUSE 

CODE AND THE BENCHMARK NUMERICAL SOLUTION. 

  
 Ra = 103 

  Present study De Vahl Davis [1] Difference (%) 

Nu  1.118 1.118 0.000 

    
aveNu ,2/1  1.127 1.118 0.799 

    

aveNu ,0  1.117 1.117 0.000 

    

maxNu ,0  1.503 1.505 0.133 

 *,0 y  (0, 0.094) (0, 0.092)  

    
minNu ,0  0.693 0.692 0.144 

 *,0 y  (0, 0.998) (0, 1)  

    
*
maxu  3.649 3.649 0.000 

 *,5.0 y  (0.5, 0.826) (0.5, 0.813)  

    
*
maxv  3.702 3.697 0.135 

 5.0,*x  (0.174, 0.5) (0.178, 0.5)  

    
  
 Ra = 104 

 Present study De Vahl Davis [1] Difference (%) 

Nu  2.252 02.243 0.400 

    

aveNu ,2/1  2.271 02.243 1.233 

    
aveNu ,0  2.244 02.238 0.267 

    

maxNu ,0  3.543 03.528 0.423 

 *,0 y  (0, 0.142) (0, 0.143)  

    
minNu ,0  0.596 00.586 1.678 

 *,0 y  (0, 0.998) (0, 1)  

    
*
maxu  15.796 16.178 2.418 

 *,5.0 y  (0.5, 0.826 (0.5, 0.823)  

    
*
maxv  19.251 19.617 1.901 

 5.0,*x  (0.116, 0.5) (0.119, 0.5)  

    
The values in the parentheses are the non-dimensional coordinates. 

  

V. RESULTS AND DISCUSSION 

To ensure that the results will not have the deviations 

because of the grid sizes, The grid independent tests were 

carried out at Ra = 104,   = 90o and the non-uniform grid 

sizes were 3030, 3232, 3434, 3636, 3838, and 4040. 

The grids near the walls of the enclosure are fine while the 

grids near the central area of the enclosure are coarse. The 

ratio of the width of the grids near the central area of the 

enclosure to the width of the sequential grids near the walls of 

the enclosure is 1.2. The average Nusselt number throughout 

the enclosure, Nu , was adopted to be the criteria test value. 

The change of Nu  is less than 0.01 percent, when the grid 

sizes are larger than or equal 3636. Therefore, the 

non-uniform grid size 3838 was employed throughout this 

work. The dimensions of the enclosure are 2020 mm. 

Fig. 2. and 3. present the local Nusselt numbers on the hot 

and cold walls for the different angles of the inclination of the 

enclosure at Ra = 103 and 104. The local Nusselt numbers on 

the hot wall near the bottom of the enclosure have the large 

valves because of the steep temperature gradients shown in 

Fig. 5., and the values decrease along the distance in the y 

direction of the hot wall of the enclosure, while the local 

Nusselt numbers on the cold wall of the enclosure have the 

values in the different way. 

 

 
(a)  = 30o, 45o and 60o 

 

 
(a)  = 120o, 135o and 150o 

Fig. 2. Comparison between the local Nusselt numbers on the hot and cold 

walls for different angles of inclination  at Ra = 103. 

 

 
(a)  = 30o, 45o and 60o 
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(a)  = 120o, 135o and 150o 

Fig. 3. Comparison between the local Nusselt numbers on the hot  and 

cold walls for different angles of inclination  at Ra = 104. 

 

 
Fig. 4. The average Nusselt numbers for different angles of inclination . 

 

 

 

 

(a)  = 30o  (b)  = 60o 

   

 

 

 
(c)  = 120o  (d)  = 150o 

   

Fig. 5. Temperature contours of air in an inclined square enclosure for 

different angles of inclination  at Ra = 104. 

 

Fig. 4. shows the average Nusselt numbers for the different 

angles of the inclination of the enclosure at Ra = 1103, 

5103, 7103 and 1104. The average Nusselt number values 

vary according to the Rayleigh number values and the 

maximum average Nusselt numbers occur at   110o for Ra = 

1103 and   130o for 3103  Ra 1104. 

Fig. 6. shows the velocity vectors of the airflow in the 

inclined square enclosure at Ra = 104. The velocity vectors of 

the airflow have larger values when the hot wall of the 

enclosure faces upward because hot air is easy to flow up to 

the cold wall of the enclosure in this condition. 

 

 

 

 
(a)  = 30o  (b)  = 60o 

   

 

 

 

(c)  = 120o  (d)  = 150o 

   

Fig. 6. Velocity vectors of airflow in an inclined square enclosure for 

different angles of inclination  at Ra = 104. 

 

VI. CONCLUSION 

NOMENCLATURE 

g gravitational acceleration, m/s2 

h enthalpy, J/kg 

k thermal conductivity, W/mK 

Nu Nusselt number 

P pressure, Pa 

Ra Rayleigh number 

T temperature, K 

u velocity component in x direction, m/s 

v velocity component in y direction, m/s 

V total velocity, m/s 

x Cartesian coordinate in high direction of the 

enclosure, m 

y Cartesian coordinate in wide direction of the 

enclosure, m 

Greek symbols 

 thermal diffusivity, m2/s 

 inclination angle of the enclosure, o 

 viscosity, kg/sm 

 density, kg/m3 

Mathematical symbol 

 del operator 

Superscript 

iter iteration number 

Subscripts 

A air 

C cold wall 

H hot wall 

 

For the natural convection occurring in the square 
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differentially heated wall enclosure, the average Nusselt 

numbers have larger values when the Rayleigh numbers have 

larger values. The local Nusselt numbers on the hot and cold 

walls of the enclosure will have larger values when those areas 

have the steeper temperature gradients. The angles of the 

inclination of the enclosure giving the maximum average 

Nusselt numbers are   110o for Ra = 1103 and   130o for 

3103  Ra 1104. 
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