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Abstract—The unsteady pulsatile flow of blood through 

porous medium has been studied under the influence of periodic 

body acceleration by considering blood as incompressible 

Newtonian electrically conducting fluid in the presence of 

magnetic field. A numerical solution of the equation of motion is 

obtained by applying a generalized differential quadrature 

method (GDQM), to derivatives with respect to space variables 

of differential equations and for the time derivative applying 4
th

 

order Runge Kutta Method. This combination of DQM and 4
th

 

order RK method gives very good numerical technique for 

solving time dependent problems. The algorithm is coded in 

Matlab 7.14.0.739 and the simulations are run on a Pentium 4 

CPU 900 MHz with 1 GB memory capacity. The numerical 

results show and discussed with the help graphs. The study 

show that the axial velocity of the blood increases with 

increasing the permeability parameter of porous medium and 

the Womersley parameter, and decreases with increasing the 

Hartmann number. The study is useful for evaluating the role of 

porosity when the body is subjected to magnetic resonance 

imaging (MRI).  

 
Index Terms—Pulsatile blood flow magnetic field, body 

acceleration, porous medium, differential quadrature method, 

runge-kutta method. 

 

I. INTRODUCTION 

MHD viscous flow though pipes plays significant role in 

different areas of science and technology such as Petroleum 

industry, Biomechanics, Drainage and Irrigation engineering 

and so on. The investigations of blood flow through arteries 

are of considerable importance in many cardiovascular 

diseases particularly atherosclerosis. The pulsatile flow of 

blood through an artery has drawn the attention to the 

researchers for a long time due to its great importance in 

medical sciences. Under normal conditions, blood flow in the 

human circulatory system depends upon the pumping action 

of the heart and this produces a pressure gradient throughout 

the arterial network [1], [2].  During the last decades 

extensive research work has been done on the fluid dynamics 

of biological fluids in the presence of magnetic field. The 

flow of a conducting fluid in a circular pipe has been 

investigated by many authors [3]–[5]. References [6], [7] 

have studied steady viscous incompressible flow through 
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circular and elliptic tubes under the influence of periodic 

pressure. They studied the effect of MHD flow of blood 

under body acceleration. Also, studied Womersley problem 

for pulsatile flow of blood through porous medium. 

Many researchers have reported that the blood is an 

electrically conducting fluid [8], [9]. The electromagnetic 

force (Lorentz force) acts on the blood and this force opposes 

the motion of blood and there by flow of blood is impeded, so 

that the external magnetic field can be used in the treatment 

of some kinds of diseases like cardiovascular diseases and in 

the diseases with accelerated blood circulation such as 

hemorrhages and hypertension. 

In general, biological systems are affected by an 

application of external magnetic field on blood flow through 

human arterial system. Many mathematical models have 

already been investigated by several research workers to 

explore the nature of blood flow under the influence of an 

external magnetic field. Reference [10] studied a 

mathematical model of biomagnetic fluid dynamics (BFD), 

suitable for the description of the Newtonian blood flow 

under the action of magnetic field. Reference [11] studied 

magneto-hydrodynamic effects on blood flow through a 

porous channel. They considered the blood a Newtonian fluid 

and conducting fluid. Arterial MHD pulsatile flow of blood 

under periodic body acceleration has been studied by [12]. 

The effect of uniform transverse magnetic field on its 

pulsatile motion through an axi-symmetric tube is analyzed 

by [13]. Reference [14] studied the characteristics of blood 

flow under body accelerations. References [15]–[17] 

considered various types of body accelerations and studied 

different characteristics of blood flow according to the nature 

of accelerations. Reference [18] discussed the flow 

characteristics of blood under external body acceleration 

assuming blood to be a Newtonian fluid. References [20], 

[21] studied the effect of body acceleration in different 

situations. 

Numerical approximation methods for solving partial 

differential equations have been widely used in various 

engineering fields. Classical techniques such as finite 

element and finite difference methods are well developed and 

well known. These methods can provide very accurate results 

by using a large number of grid points. In seeking an alternate 

numerical method using fewer grid points to find results with 

acceptable accuracy, the method of DQM was introduced by 

[26]–[35].  

In this paper, DQM and 4th order RKM is applied to time 

dependent problem. DQ technique approximates the 

derivative of a function at a grid point by a linear weighted 

summation of all the functional values. Derivatives with 
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respect to space variables are discretized using DQM giving a 

system of ordinary differential equations for time derivative, 

and time derivatives are discretized using 4th order RKM. 

This combination of DQM and 4th order RK method gives 

very good numerical technique for solving time dependent 

problems. Stability of 4th order RKM criterias are controlled 

with several values of time increment Δt and number of grid 

points N in space region. In this paper, GDQM used for 

studying the unsteady pulsatile blood flow through porous 

medium under the influence of periodic body acceleration in 

the presence of magnetic field. 
 

II. MATHEMATICAL FORMULATION 

Consider the flow in an artery of radius R as shown in Fig. 

1, here blood is supposed to be as an electrically conducting, 

Newtonian, incompressible, and viscous fluid in the presence 

of magnetic field acting along the radius of a circular pipe. 

Also, the viscosity of blood is considered to be constant. We 

assume that the magnetic Reynolds number of the flow is 

taken to be small enough, so that the induced magnetic and 

electric field can be neglected. We consider the flow as 

axially symmetric, pulsatile and fully developed as [22] in 

dimensionless form.  

where AO and A1 are pressure gradient of steady flow and 

amplitude of oscillatory part respectively, aO is the amplitude 

of the body acceleration, 2 ,p pf   2b bf  with fp is the 

pulse frequency, and fb is the body acceleration frequency 

and t is time, u(r,t) is the velocity distribution, ρ the blood 

density, μ the dynamic viscosity of the blood,  0, ,0OB B the 

magnetic field, k is the permeability parameter of porous 

medium, and σ the electric conductivity of the blood.  

The Hartmann number, Ha and the Womersley parameter, 

α are defined respectively by:         
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Also the boundary conditions are: 

        (1, ) 0u t            on     1,r      no slip                   (3a) 

        (0, )u t          is finite      axis of the pipe              (3b) 

And the initial condition is: 

        ( ,0) 1u r            at     0t                                       (3c) 
 

 

Fig. 1. Schematic diagram for the flow geometry. 

III. GENERALIZED DIFFERENTIAL QUADRATURE METHOD 

(GDQM) 

The DQM is a numerical solution technique for initial 

and/or boundary value problems. This technique has been 

successfully employed in a variety of problems in 

engineering and physical sciences. The DQM approximates 

the derivative of a function at any location by a linear 

summation of all the functional values along a mesh (grid) 

line. The GDQM is systematically employed to solve 

problems in Fluid mechanics, vibration analysis and 

structural analysis. The technique of GDQM for the solution 

of partial differential equations extended and generalized. 

Numerical examples have shown the super accuracy, 

efficiency, convenience and the great potential of this 

method. A GDQM, which was recently proposed by 

[28]–[30] for solving partial differential equations. For the 

discretization of the first and higher order derivatives, the 

following linear constrained relationships are applied 

        ( ) ( )

1

( , ) . ( , ),
N

n n

x i ij j

j

f x t C f x t


  1,2,..., 1,n N           (4) 

for 1,2,..., ;i N where ( )n

xf indicate nth order derivatives of 

f(x,t) with respect to x at xi, N is the number of grid points in 

the whole dominant ( )n

ijC are the weighting coefficients. The 

key to DQ is to determine the weighting coefficients for the 

discretization of a derivative of any order. In order to find a 

simple algebraic expression for calculating the weighting 

coefficients without restricting the choice of grid meshes, 

[28]–[30] gave a convenient and recurrent formula for 

determining the derivative weighting coefficients.  

To determine the weighting coefficients of the GDQ 

method as: 
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Weighting coefficients for the second and higher order 

derivatives 
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    for  , 1,2,..., ;i j N  2 3 1., ,...,Nn       (9) 

where ( )n

ijC and ( 1)n

ijC   are the weighting coefficients of the nth 

and the (n−1)th derivatives. Thus (8) and (9) together with (5) 

and (6) give a convenient and general form for determining 

the weighting coefficients for the derivatives of orders one 

through N–1.  
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IV. NUMERICAL DISCRETIZATION AND STABILITY OF THE 

SCHEME 

In the present study, substituting the DQ derivative 

approximations given in (4) in the governing (2). The 

coordinates of the grid points are chosen according to 

Chebyshev-Gauss-Lobatto by using N sampling as: 

       1 1
( ) 1 cos ,

2 1

i
X i

N


   
      

      1,2,3,..., ;i N  

The GDQM is applied for the discretization of space 

derivatives of the unknown function u, we obtain the ordinary 

differential equation 
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where ,iu 1,2,..., ;i N is the velocity value at the grid ri, 

(1)

ijC and (2)

ijC are the weighting coefficient matrix of the first 

and second order derivatives. Similarly, the derivatives in the 

boundary conditions can be discretized by the GDQM. As a 

result, the numerical boundary conditions can be written as: 
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Equation (11b) can be easily substituted into the governing 

equation. This is not the case for (11a). However, one can 

give solutions, 
1u as 
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According to (12), 1u is expressed in terms of 

2 3 1, , , ,Nu u u  and can be easily substituted into the 

governing equation. It should be noted that (11) provides two 

boundary equations. In total we have N unknowns 

1 2, , , .Nu u u In order to close the system, the discretized 

governing (10) has to be applied at 2N  mesh points. This 

can be done by applying (10) at grid points 2 3 1, , , .Nr r r 
Substituting (11b) and (12) into (10) gives: 
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It is noted that (13) has 2N  equations with 2N   

unknowns. 

Now, the discretization for time derivative will be 

performed by using Runge-Kutta Method. Now, u

t




is also 

considered discretized as 
,

iju

t





thus (13) is a set of DQ 

algebraic equations which can be written in a matrix form 

                                           (14) 

where    2 3 1, , , .Nu u u u   is a vector of unknown 2N 

functional values at all discretized points of the region,  A is 

the    2 2N N   coefficient matrix, and the right hand side 

vector  b of size  2 1N   contains first order time 

derivatives of the function u at the same discretized points. 

Therefore a numerical scheme is necessary for handling these 

time derivatives. (14) can be solved by several time 

integration schemes such as Euler, Modified Euler, and 

Runge-Kutta Methods. Here, Runge-Kutta Method is going 

to be used since it is a one step method obtained from the 

Taylor series expansion of u up to and including the terms 

involving  
4

t where t is the step size with respect to time. 

The 4th order RKM since its stability region is larger 

comparing to the other time integration methods and simple 

for the computations.  

The resulting algebraic system of (14) can originally be 

considered as an initial value problem in the form (a set of 

ordinary differential equations in time) 
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                                    (15) 

Thus the 4th order RKM gives for the governing equation 

the following vector equation 
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Applying 4th order RKM (16) in (15). Thus, we can easily 

write by taking   A u as the vector function    ,f t u in 

the sample initial value problem ( , )u f t u So, 

             ,  f t u A u                              (17) 

The Matlab program has been used to solve this problem 

and get the velocity distribution.  

 

V. NUMERICAL RESULTS AND DISCUSSION 

We studied unsteady pulsatile blood flow through porous 

medium in an artery under the influence of periodic body 

acceleration in the presence of magnetic field. We have 

shown the relation between the different parameters of 

motion such as Hartmann number Ha, Womersley parameter 

α, the frequency of body acceleration b, the permeability 
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parameter of porous medium k with the velocity distribution 

to investigate the effect of changing these parameters on the 

blood flow. Hence, we can be controlling the process of flow. 

 

 
Fig. 2. Comparisons between exact and numerical solution of velocity with 

the pipe radius [AO=1, A1=0, aO=0, b=0, Ha=1, 1/k=2, t→∞]. 

 
 

 
 

Fig. 3. Comparisons between exact and Numerical Solution of velocity 

distribution with time [α=1, AO=1, A1=0, aO=0, b=0, Ha=1, 1/k=2]. 

 

 
Fig. 4. The Velocity Distribution with Time [α=1, AO=1, A1=1, aO=0, b=0, 

Ha=1, 1/k=2]. 

 

 

Fig. 5. The effect of Hartman number on velocity distribution [α=1, AO=1, 

A1=1, aO=0, b=0, 1/k=2, t=1]. 

 

Fig. 6. The effect of Porosity number on velocity distribution [α=1, AO=1, 

A1=1, aO=0, b=0, Ha=1, t=1]. 

 

 

Fig. 7. The effect of Womersley parameter on velocity distribution [AO=1, 

A1=1, aO=0, b=0, Ha=2, 1/k=1, t=1]. 

 

 

Fig. 8. The effect of Womersley parameter on velocity distribution with time 

[AO=1, A1=1, aO=0, b=0, Ha=1, 1/k=2, t=1]. 

 

 

Fig. 9. The Velocity Distribution with Time [α=1, AO=1, A1=1, aO=1, b=2, 

Ha=1, 1/k=2]. 

 

A numerical code has been written to calculate the velocity 

distribution according to (14). In order to check our code and 

comparison the numerical solution with exact solution, we 

run it for the parameters related to a realistic physical 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pipe Radius

V
e
lo

c
it
y

 

 

u Numerical

uexact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pipe Radius

V
e
lo

c
it
y

 

 

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pipe Radius

V
el

oc
ity

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Pipe Radius

V
e
lo

c
it
y

Ha = 1.0

Ha = 0.0

Ha = 2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pipe Radius

V
el

oc
ity

1/k = 0.0

1/k = 1.0

1/k = 2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pipe Radius

V
el

oc
ity

  alpha = 3.0

alpha = 2.0

alpha = 1.0

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pipe Radius

V
el

oc
ity

 

 

alpha = 3.0

alpha = 2.0

alpha = 1.0

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

V
el

oc
ity

 

 

203

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 2, May 2013



  

problem similar to the one used by [24], [25], Figs. 2, 3 for 

the motion of a conducting fluid through a porous medium, 

Fig. 2 shows the relation between velocity distribution with 

the pipe radius, for r=0.5 we obtain the axial velocity 

u=0.12374654323755, which equals (if we keep 15 digits 

after the decimal point) to the result of [24], 

u=0.12374654323755. The same confirmation was made 

with [25]. The axial velocity profiles computed by using the 

velocity (14) for different values of parameters Ha, α, b and k 

and have been shown through Figs. 4–15. 

Fig. 4–Fig. 8, for unsteady MHD pulsatile flow through 

porous medium in the presence of magnetic field. Fig. 4 show 

the relation between axial velocity with time. Fig.5 show that 

as the Hartmann number increases the axial velocity 

decreases. Fig. 6 the axial velocity of the blood increases with 

increasing the permeability parameter of porous medium. 

Fig. 7and Fig. 8 shows the effect of the Womersley parameter 

on the axial velocity distribution, we note that the axial 

velocity increase with increasing Womersley parameter. 

 

 

Fig. 10. The effect of Hartman number on velocity distribution [α=1, AO=1, 

A1=1, aO=1, b=2, 1/k=2, t=1]. 

 

 

Fig. 11. The effect of porosity number on velocity distribution [α=1, AO=1, 

A1=1, aO=1, b=2, Ha=1, t=1]. 

 

 

Fig. 12. The effect of frequency of body acceleration on velocity distribution 

with the pipe radius [α=1, AO=1, A1=1, aO=1, Ha=1, 1/k=2 t=1]. 

 

Fig. 13. The effect of frequency of body acceleration on velocity distribution 

with time [α=1, AO=1, A1=1, aO=1, Ha=1, 1/k=2 t=1]. 

 

 

Fig. 14. The effect of Womersley parameter on velocity distribution [AO=1, 

A1=1, aO=1, b=2, Ha=2, 1/k=1, t=1]. 

 

 

 

Fig. 15. The effect of Womersley parameter velocity distribution with time 

[AO=1, A1=1, aO=1, b=2, Ha=1, 1/k=2 t=1]. 

 

Fig. 9–Fig. 14 for unsteady MHD pulsatile flow through 

porous medium in the presence of magnetic field under the 

effect of body acceleration, Fig.9 shows the relation between 

velocity distributions with time, Fig.10 show that as the 

Hartmann number increases the axial velocity decreases. 

Fig.11 the axial velocity of the blood increases with 

increasing the permeability parameter of porous medium. 

Fig. 12 and Fig. 13 shows the effect of the frequency of the 

body acceleration on the axial velocity distribution, we note 

that the axial velocity decreases with increasing the 

frequency of body acceleration. Fig. 14 and Fig. 15 shows the 

effect of the Womersley parameter on the axial velocity 

distribution, we note that the axial velocity increase with 

increasing Womersley parameter.  

 

VI. CONCLUSIONS 

In the present mathematical model, the unsteady pulsatile 

blood flow through porous medium in the presence of 

magnetic field with periodic body acceleration through a 
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rigid straight circular tube (artery) has been studied. The 

velocity expression has been obtained in numerically. It is of 

interest to note that the axial velocity increases with 

increasing of the permeability parameter of porous medium 

and Womersley parameter whereas it decreases with 

increasing the Hartmann number, frequency of body 

acceleration.  

The present model gives a numerical solution of velocity 

distribution with pipe radius and time. It is of interest to note 

that the result of the present model includes results of 

different mathematical models such as: The results of [24], 

[25], the results of [23] have been recovered by taking the 

permeability of porous medium k→∞ without stochastic and 

no body acceleration, the results of [19] have been recovered 

by taking Hartmann number Ha=0.0 (no magnetic field), the 

results of [18] have been recovered by taking the 

permeability of porous medium k→∞ and Hartmann number 

Ha=0.0 (no magnetic field). 

It is possible that a proper understanding of interactions of 

frequency body acceleration with blood flow may lead to a 

therapeutic use of controlled body acceleration. It is therefore 

desirable to analyze the effects of different types of vibrations 

on different parts of the body. Such a knowledge of body 

acceleration could be useful in the diagnosis and therapeutic 

treatment of some health problems (joint pain, vision loss, 

and vascular disorder), to better design of protective pads and 

machines. 

By using an appropriate magnetic field it is possible to 

control blood pressure and also it is effective for conditions 

such as poor circulation, travel sickness, pain, headaches, 

muscle sprains, strains, and joint pains.  

Hoping that this investigation may have for further studies 

in the field of medical research, the application of magnetic 

field for the treatment of certain cardiovascular diseases, and 

also the results of this analysis can be applied to the 

pathological situations of blood flow in coronary arteries 

when fatty plaques of cholesterol and artery clogging blood 

clots are formed in the lumen of the coronary artery. The 

study is useful for evaluating the role of porosity when the 

body is subjected to magnetic resonance imaging (MRI). 
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