Acoustics of a Helmholtz Resonator Aligned Parallel with Flow: A Computational Study VS. Experiments

Emel Selamet, Ahmet Selamet, Asim Iqbal, and Hyunsu Kim

Abstract—Acoustic attenuation of a Helmholtz resonator (HR) placed parallel to the flow path is investigated computationally with and without mean flow and compared with experimental results. The time-dependent flow field is determined by solving three-dimensional unsteady, laminar/turbulent, compressible Navier-Stokes equations using Pressure-Implicit-Splitting-of-Operators algorithm of STAR-CD. Computations are performed by different finite difference schemes such as central and upwind for momentum equation. Predictions with central differencing, a blending (with upwind) factor 0.5, and fine mesh reveal results that are consistent with the experimental observations. The effect of flow on the acoustic attenuation characteristics of HR has been illustrated both computationally and experimentally. The predictions for transmission loss exhibit reduced attenuation at elevated flow rates.

Index Terms—Helmholtz resonator, flow effect on acoustics, transmission loss.

I. INTRODUCTION

A variety of analytical, computational, and experimental studies is available in literature to investigate the acoustic behaviour of HRs since they are extensively used in many applications, such as the breathing system of internal combustion engines and compressors [1]-[3]. One of the critical factors influencing their acoustic performance is the presence of mean flow. A recent study [4], for example, examines this effect for a HR with its neck oriented perpendicular to flow. The emphasis of the present study examines this effect as applied, however, to a different orientation of a (“charged”) HR, where the silencer of [4] is now aligned parallel to the incident flow as illustrated in Fig. 1. Multidimensional time domain computations are performed to predict the acoustic behaviour of this HR. These predictions are then compared with experimental results on a flow-impedance tube setup, which is described in [4]. In the setup, pressure transducers are located at two upstream (referred to as locations 1 and 2 hereafter) and two downstream locations (3 and 4), 4 cm apart from each other, for capturing the pressure fluctuations which are then used to calculate the acoustic attenuation in terms of transmission loss.

Following this Introduction, Section II briefly describes the solution method. Computational results and their comparison with experimental data are presented in Section III, followed by concluding remarks in Section IV.

II. SOLUTION METHOD

Compressible air flow in ducts is simulated by STAR-CD which combines Pressure-Implicit-Splitting-of-Operators (PISO) algorithm for transient flows with the fully-implicit Euler and explicit deferred correctors [5]. For the solution of discretized conservation of momentum, mass, and energy equations a blending factor is introduced which can vary from 0 to 1. Blending factor defines the level of upwind differencing incorporated in the discretization. The computational domain is initially set to stagnant (zero velocity) conditions at \(p = 101 \text{kPa}\) and \(T = 293 \text{K}\). The boundary conditions at the inlet and outlet are given as follows. At the inlet

\[u_{\text{inlet}} = u_m + 0.01 \sin(\omega t) \]

where \(u_m\) is the mean velocity and \(\omega (= 2 \pi f)\) the angular frequency. For the outlet, transient-wave transmissive boundary is selected among built-in boundary condition selections. This condition allows transient waves to exit the domain without any reflection, hence providing an anechoic termination.

The mesh is composed of 83691 vertices and 71245 cells (coarse mesh) for the inlet and outlet duct lengths of 84.5 cm. The lengths of cylindrical resonator cavity and neck are 24.4 cm and 8 cm, while their radii are 7.5 cm and 2 cm, respectively. The results are also obtained with finer mesh and with the inlet and outlet duct lengths of 60.3 cm which resulted in 147336 vertices and 81955 cells. Shortening the duct lengths reduces the cpu time, while improving the resolution.

III. RESULTS AND DISCUSSION

Simulations are carried out for \(u_{\text{inlet}} = 0.0, 17.15, \text{and } 34 \text{m/s}, \text{Ma} = 0, 0.05, \text{and } 0.1, \) respectively. The runs are terminated when the residuals of momentum, mass, and energy stay within a certain interval and do not decrease...
any further indicating that a pseudo steady state is reached in the computational domain. The histories of fluctuating pressures at the inlet and outlet locations are obtained for different velocities and frequencies so that the acoustic performance properties such as the transmission loss can be predicted. Fast Fourier transform (FFT) of the temporal data provides the pertinent frequency domain information. The frequency spectrum reveals the resonance (or, the dominant) frequency. Sound pressure level (SPL) is a logarithmic measure of the sound pressure expressed as

\[\text{SPL} = 20 \log_{10} \left(\frac{p_{\text{rms}}}{p_{\text{ref}}} \right) \text{ in dB}, \]

where \(p_{\text{rms}} \) is the rms sound pressure and \(p_{\text{ref}} = 20 \mu \text{Pascals} \). Transmission loss (TL) is related to the reduction of SPL in transmitted wave relative to incident wave as the sound travels through a component. The two-microphone technique [6], [7] is applied under the condition of equal cross-sectional areas at the inlet and outlet locations. It gives, by using FFT of the fluctuating pressures at locations 1 through 4,

\[TL = 10 \log_{10} \left(\frac{P_1(f)e^{ikr_1} - P_2(f)}{P_3(f)e^{ikr_1} - P_4(f)} \right), \]

where \(s \) is the distance between two microphones (or corresponding pressure pickup locations in simulations), \(k_r \) the wave number of the reflected pressure and defined as \(k/(1 - Ma) \).

A. Effect of Blending Factor

First, the simulations are performed for Ma=0.05 with a coarse mesh. It is observed that for the spatial central differencing with different blending factors (BF) yield different results. Fig. 2 depicts the transmission loss for Ma=0.05 obtained with central differencing scheme which employs blending factors of 0.2, 0.5, and 0.8 for the solution of momentum equation. Since the predictions match the experimental results reasonably well with BF=0.5, the remainder of the runs in the present study are performed with this value.

B. Zero Mean Flow Results (Ma=0.0)

Fig. 3 compares the predicted and experimental transmission losses with \(L_{\text{duct}} = 84.5 \) cm. Again, the predicted TL curve is shifted slightly to the left. Similarly, when this case is re-examined with reduced mesh size and shorter length (60.3 cm), a good agreement is obtained between the predictions and experiments, as illustrated in Fig. 6. Note that the peak TL magnitude with Ma=0.05 has not yet changed noticeably relative to the no-flow case.

C. Mean velocity of 17.15m/s(Ma=0.05)

Fig. 5 compares the predicted and experimental transmission losses with \(L_{\text{duct}} = 84.5 \) cm. Again, the predicted TL curve is shifted slightly to the left. Similarly, when this case is re-examined with reduced mesh size and shorter length (60.3 cm), a good agreement is obtained between the predictions and experiments, as illustrated in Fig. 6. Note that the peak TL magnitude with Ma=0.05 has not yet changed noticeably relative to the no-flow case.
D. Mean Velocity of 34 m/s (Ma=0.1)

TL for this case is presented only for finer mesh with
L_{duct} = 60.3 cm. The comparison of the predicted and
experimental TL in Fig. 7 reveals a relatively reasonable
agreement. Since the flow rate is higher for this case,
reducing the mesh size further may improve the results.
While the maximum values of TL with Ma=0 and 0.05
were approximately the same (about 35 dB), it has now
dropped dramatically to about 16 dB for Ma=0.1. This
may possibly be attributed to the fact that the fluid
residence time, hence the ability to interact with the
resonator, is reduced with increasing velocity. Therefore,
it is necessary to take the effect of mean flow into account
for predicting accurately the acoustic performance of a
system with Helmholtz resonators.

E. Acoustic Pressures

To examine the acoustic pressure variation in the
present configuration with HR, an example case of
Ma=0.05 and f=84 Hz is considered. To isolate the effect
of HR on the system, acoustic pressures are also computed
with the same ducts but without HR. Fig. 8 shows the
fluctuating pressures at locations 1, 2 (inlet), 3, and 4
(outlet) with the HR, whereas Fig. 9 shows the same
quantities without HR. The comparison of p3 and p4 in
Figs. 8 and 9 clearly illustrates that the acoustic pressures
at the outlet are dramatically suppressed near the
resonance frequency with HR, as intended.

IV. CONCLUDING REMARKS

A computational model has been presented in this paper
to predict the TL of a Helmholtz resonator placed parallel
to the flow path. The predicted values of transmission loss
are compared with the experimental results for validation.
With sufficient care in choosing the numerical parameters
such as proper differencing scheme and grid size, the
predictions and experimental results show good
agreement. Significant increase in flow rate (such as
Ma=0.1) is shown to reduce the acoustic attenuation considerably, which is captured here both computationally
and experimentally.

APPENDIX

Nomenclature

\begin{itemize}
 \item c \hspace{1cm} \text{speed of sound}
 \item f \hspace{1cm} \text{frequency}
 \item k \hspace{1cm} \text{wave number (} = \omega/c\text{)}
 \item Ma \hspace{1cm} \text{Mach number}
 \item p \hspace{1cm} \text{pressure}
 \item P(f) \hspace{1cm} \text{Fourier-transformed acoustic pressure}
 \item s \hspace{1cm} \text{distance between microphones}
 \item t \hspace{1cm} \text{time}
 \item u \hspace{1cm} \text{velocity}
\end{itemize}

Greek symbols

\begin{itemize}
 \item \omega \hspace{1cm} \text{angular frequency}
\end{itemize}

Subscripts

\begin{itemize}
 \item i \hspace{1cm} \text{incident}
 \item m \hspace{1cm} \text{mean}
\end{itemize}
Abbreviations

- FFT: Fast Fourier Transform
- HR: Helmholtz Resonator
- PISO: Pressure-Implicit-Splitting-Operators
- rms: Root Mean Square
- SPL: Sound Pressure Level
- TL: Transmission Loss

REFERENCES

Emel Selamet received her Ph.D. in Mechanical Engineering at University of Michigan in 1991; the M.S. in M.E. University of Michigan in 1986, the M.S. in Energy, M.E. Technical University of Istanbul, 1982. B.S.in. M. E. Technical University of Istanbul, 1980. She is a Research Scientist at Center for Automotive Center, The Ohio State University from 1997 to now. And she was the Research Fellow of University of Michigan from 1991 to 1995.