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Abstract—In this paper we present a new graph grammar 

based direct solver algorithm delivering linear O(N) 

computational cost and linear O(N) memory usage for adaptive 

finite element method simulations. Classical direct solvers on 

regular grids deliver O(N
1.5

) complexity for 2D problems and 

O(N
2
)  in 3D ones. The linear computational cost of our solver is 

obtained by generating graph representation of the adaptive 

mesh and by utilizing dynamic construction prescribing the 

solver algorithm as graph grammar productions. 

 
Index Terms—Direct solvers, graph grammar, adaptive finite 

element method.  

 

I. INTRODUCTION 

Direct solver is the core part of several challenging 

engineering applications performed by means of the Finite 

Element Method (FEM) [1]-[3]. Exemplary problems 

involve generation of acoustic waves over the model of the 

human head [4] or borehole resistivity simulations [5]. The 

process of solving finite element engineering problems starts 

with generation of the mesh describing the geometry of the 

computational problem. Next, the physical phenomena 

governing the problem is described by some Partial 

Differential Equation (PDE) with boundary and / or initial 

conditions. Then, PDE is discretized into a system of linear 

equations using FEM. At this point, the solver algorithm is 

executed in order to provide the solution to the system of 

linear equations. The aforementioned engineering problems 

generate huge linear systems with several million unknowns, 

and the solver algorithm is the most expensive part of the 

process in terms of the computational cost. Multi-frontal 

solver is the state-of-the art algorithm for solving linear 

systems of equations [6], [7] using the direct solver approach. 

The multi-frontal algorithm constructs an assembly tree 
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based on the analysis of the connectivity data or the geometry 

of the computational mesh. Finite elements are merged into 

pairs and fully assembled unknowns are eliminated within 

frontal matrices associated to multiple branches of the tree. 

This process is repeated until the root of the assembly tree is 

reached. Finally, the common interface problem becomes 

solved and partial backward substitutions are recursively 

called on the assembly tree. 

Classical direct solvers executed on regular grids deliver 

O(N1.5) complexity for two dimensional problems and O(N2) 

complexity for three dimensional problems [8]. In this paper 

we propose a new graph grammar based direct solver, 

delivering linear O(N) time and memory complexity for 

computational problems with point singularities. 

 

II. MODEL PROBLEM 

The L-shape domain problem is a model academic 

problem formulated by Babuška in 1986 [9, 10], to test the 

convergence of the p and hp adaptive algorithms. The 

problem consists in solving the temperature distribution over 

the L-shape domain, presented in Fig. 1 with fixed zero 

temperature in the internal part of the boundary, and the 

Neumann boundary condition prescribing the heat transfer on 

the external boundary. 

 

 Fig. 1. The L-shape domain model problem.  

 

 

Fig. 2. The solution of the L-shape domain model problem.  
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There is a single singularity in the central point of the 

domain (the gradient of temperature goes to infinity, compare 

Fig. 2), so the accurate numerical solution requires a 

sequence of adaptations in the direction of the central point. 

The problem can be summarized as follows: 

Find the temperature distribution  

  RxuxRu 2:        (1) 
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with n  being the unit normal outward to   vector, and 

being defined in the in the radial system of coordinates with 

the origin point O  presented in Fig. 1. Equation (5) is 

actually based on the exact solution to the L-shape problem. 
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III. FICHERA PROBLEM 

The Fichera problem constitutes the generalization of the 

L-shape domain problem into three dimensions. It can be 

summarized in the following way: Find the temperature 

distribution   RxuxRu 3:  over the domain 

presented in Fig. 3 such that  
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with n being the unit normal outward to   vector, and g is 

the exact solution of the L shape problem.  

 

 
Fig. 3. Domain visualization for the Fichera problem 

  
 

     

Fig. 4.  The sequence of meshes generated by the self-adaptive hp-FEM for 

the Fichera problem. Different colors denote different polynomial orders of 

approximations presented in Fig. 3. 

 

Fig. 5. The sequence of meshes generated by the self-adaptive h-FEM for the 

Fichera problem with fixed p=5. 

 

IV. AUTOMATIC HP-ADAPTATION 

A. Exponential Convergence 

The presented problems have been solved by both 

self-adaptive hp-FEM and h-FEM (with constant polynomial 

approximation level p=5). Only hp-adaptive FEM is 

guaranted to deliver exponential convergence of the 

numerical error with respect to the mesh size [2], [3]. See 

Table I to compare convergence rates for both methods. 

 
TABLE I: CONVERGENCE  RATES OF THE SELF-ADAPTIVE H-FEM (LEFT) 

AND HP-FEM (RIGHT) FOR THE FICHERA PROBLEM. 

 
N Error  N Error 

1206 5.06  665 9.75 

8261 3.18  846 6.18 

13726 2.46  1093 4.58 

 19191 2.23  1577 3.55 

35586 2.15  2247 2.91 

   3493 2.51 

The basic idea behind hp-FEM has been explored further 

in this paragraph. 
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B. Mesh Refinements 

Generally, the quality of the solution can be improved by 

the expansion of the approximation base. In FEM terms, this 

could be done thanks to two kinds of mesh refinements: 

1) P-refinement – increase order of the basis functions on 

the elements where the error rate is higher than desired. 

More basis functions in the base mean smoother and 

more accurate solution but also more computations and 

the use of high-order polynomials often leads to 

undesirable side-effects (e.g. Runge effect).  

2) H-adaptation – split the element into two or four in 

order to obtain finer mesh. This idea arose from the 

observation that the domain is usually non-uniform and 

in order to approximate the solution fairly some places 

require more precise computations than others, where 

the acceptable solution can be achieved using small 

number of elements. The crucial factor in achieving 

optimal results is to decide if a given element should be 

split into two parts horizontally, into two parts vertically, 

into four parts (both horizontally and vertically) or not 

split at all. The refinement process is fairly simple in 1D 

but in 2D and 3D many refinement rules to follow are 

being enforced. 

C. Automated Hp-Adaptation Algorithm 

Neither p- nor h-adaptation guarantee error rate decrease 

that is exponential with a step number. This can be achieved 

by combining these two methods. In order to identify the 

most sensitive areas at each stage dynamically, and improve 

the solution as much as possible, we employ the self-adaptive 

algorithm that decides whether a given element should be 

further refined or is already fine enough for the satisfactory 

solution. These steps have been summarized in Alg. 1.  

1: function adaptive_fem( initialmesh , desirederr ) 

2:   initialcoarse mesh=mesh  

3:   repeat 

4:       coarseu   = compute solution on  coarsemesh  

5:       finemesh  = copy coarsemesh  

6:       divide each element of finemesh  into two new elements  

7:       increase order of functions on each element of finemesh  by 1 

8:       fineu   = compute the solution on finemesh  

9:       for each element κ of finemesh   do 

10:         Kerr  = compute error decrease rate on K  

11:      end do 

12:     adaptedmesh = copy coarsemesh  

13:      for each element κ  of adaptedmesh  do 

14:        if Kerr  > threshold * maxerr  then  

15:           divide K  

16:        end if 

17:      end do 

18:      enforce adaptedmesh  integrity 

19:      coarsemesh = adaptedmesh  

20:   until  maxerr  < desirederr  

21:   return finemesh  

22: end function 

 

Alg. 1. hp-adaptive PBI pseudocode 

 

We iterate until the solution on the given mesh reaches 

satisfactory error rate (lines 3-20). First, we compute the 

solution on the initial mesh, called coarse mesh. Next, we 

create its copy called fine mesh and perform both h- (line 6) 

and p-refinement (line 7) on each element  . Then, we 

compute the solution fine mesh and for each element   we 

evaluate relative error decrease. If it is satisfactory  (here we 

can assume threshold = 0.3,  see line 14), we keep the 

hp refinement on that element, since it was a justified 

decision. Otherwise, we skip the refinement for such 

element. More details can be found in [2]. 
 

V. GRAPH GRAMMAR MODEL 

The input for the solver algorithm is the locally refined 

computational mesh represented as a graph. The mesh is 

obtained by executing a sequence of graph grammar 

productions, summarized in Fig. 6 and 7. 

 
Fig. 6. Graph grammar production for generation rectangular finite element 

 

The computational mesh is further h-refined, which is 

expressed by graph grammar production summarized in Fig. 

8. Selected rectangular elements are broken into 8 new son 

elements with 12 new faces. 

In addition to that, the solver algorithm obtains a sequence 

of element matrices, one matrix for each sub-graph of the 

mesh representing a single finite element, resulting from 

discretization of the computational problem. The solver 

algorithm browses the graph representation of the mesh from 

bottom elements up to the root elements, and it merges the 

element matrices into only one frontal matrix. It first 

identifies fully assembled nodes located within each level of 

the graph representation of the mesh, eliminates them, and 

then it iterates the process by going up to the next level. This 

pattern for elimination ensures that the size of a single frontal 

matrix involved in the solver algorithm remains constant.  

The solver algorithm is expressed as graph grammar 

productions coloring graph nodes, as it is presented in Fig. 9, 

10 and 11.  
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Fig. 7. Graph grammar production for identification of common faces of two 

adjacent elements. 

 

 

 

Fig. 8. Graph grammar production for adaptation of rectangular finite 

element. 

 

VI. LINEAR COMPUTATIONAL COST OF THE SOLVER 

ALGORITHM 

Since the cost at each step (level of the elimination tree) is 

constant, the total cost of the algorithm is proportional to the 

number of levels, which by grid construction is proportional 

to the number of unknowns. As a result, we obtain a solver 

algorithm with linear computational cost with respect to the 

number of unknowns. 

This theoretical estimation has been verified 

experimentally, as it is presented in Fig. 12. It must be also 

clearly stated that the theoretical proof of the linear cost has 

been so far conducted only for h-FEM with fixed p only. For 

hp-FEM, where p may be different for each element, linear 

complexity has not been proven yet. On the other hand, 

experimental results show that solver’s complexity is for 

hp-FEM is very close to linear, compare Fig. 13. 

 
 

Fig. 9. Coloring of graph nodes for elimination of the deepest level in the 

adaptive mesh. The red nodes denotes fully assembled nodes, the yellow 

nodes denotes interface nodes. The size of the frontal matrix is equal to the 

number of yellow and red nodes, and we eliminate all red nodes. 

 

Although the linear solver code that was used to produce 

the results was only a proof-of-concept, not optimized 

implementation, it already has delivered very promising 

performance. 

The presented linear cost solver can help to dramatically 

lower the computational intensity of the existing h- and 

hp-FEM solutions. In terms of future work, it is important to 

transform the solver algorithm into efficient production code 

that could be easily applied to the large scope of problems. 

 
Fig. 10.  Coloring of graph nodes for elimination of the next level in the 

adaptive mesh 
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Fig. 11.  Coloring of graph nodes for elimination of the top level in the 

adaptive mesh. This time both red (internal) and yellow (boundary) nodes are 

fully assembled and can be eliminated. 

 

 
Fig. 12.  Linear computational cost of the h-adaptive solver algorithm 

 

 
Fig. 13.  Almost linear computational cost of the hp-adaptive solver 

algorithm 
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