



Abstract—In this paper we present a new graph grammar

based direct solver algorithm delivering linear O(N)

computational cost and linear O(N) memory usage for adaptive

finite element method simulations. Classical direct solvers on

regular grids deliver O(N
1.5

) complexity for 2D problems and

O(N
2
) in 3D ones. The linear computational cost of our solver is

obtained by generating graph representation of the adaptive

mesh and by utilizing dynamic construction prescribing the

solver algorithm as graph grammar productions.

Index Terms—Direct solvers, graph grammar, adaptive finite

element method.

I. INTRODUCTION

Direct solver is the core part of several challenging

engineering applications performed by means of the Finite

Element Method (FEM) [1]-[3]. Exemplary problems

involve generation of acoustic waves over the model of the

human head [4] or borehole resistivity simulations [5]. The

process of solving finite element engineering problems starts

with generation of the mesh describing the geometry of the

computational problem. Next, the physical phenomena

governing the problem is described by some Partial

Differential Equation (PDE) with boundary and / or initial

conditions. Then, PDE is discretized into a system of linear

equations using FEM. At this point, the solver algorithm is

executed in order to provide the solution to the system of

linear equations. The aforementioned engineering problems

generate huge linear systems with several million unknowns,

and the solver algorithm is the most expensive part of the

process in terms of the computational cost. Multi-frontal

solver is the state-of-the art algorithm for solving linear

systems of equations [6], [7] using the direct solver approach.

The multi-frontal algorithm constructs an assembly tree

Manuscript received November 12, 2012; revised March 4, 2013.

The work presented in this paper is supported by Polish National Science

Center grants no. NN519447739 and DEC-2011/03/N/ST6/01397.The work

of the second author was partly supported by The European Union by means

of European Social Fund, PO KL Priority IV: Higher Education and

Research, Activity 4.1: Improvement and Development of Didactic Potential

of the University and Increasing Number of Students of the Faculties Crucial

for the National Economy Based on Knowledge, Subactivity 4.1.1:

Improvement of the Didactic Potential of the AGH University of Science and

Technology ``Human Assets'', No. UDA – POKL.04.01.01-00-367/08-00.

Anna Paszyńska is with the Jagiellonian University, Krakow, Poland

(e-mail: anna.paszynska@uj.edu.pl).

Piotr Gurgul, Marcin Sieniek, Maciej Paszyński are with the AGH

University of Science and Technology, Krakow, Poland (e-mail:

pgurgul@agh.edu.pl, msieniek @agh.edu.pl, paszynsk@agh.edu.pl).

based on the analysis of the connectivity data or the geometry

of the computational mesh. Finite elements are merged into

pairs and fully assembled unknowns are eliminated within

frontal matrices associated to multiple branches of the tree.

This process is repeated until the root of the assembly tree is

reached. Finally, the common interface problem becomes

solved and partial backward substitutions are recursively

called on the assembly tree.

Classical direct solvers executed on regular grids deliver

O(N1.5) complexity for two dimensional problems and O(N2)

complexity for three dimensional problems [8]. In this paper

we propose a new graph grammar based direct solver,

delivering linear O(N) time and memory complexity for

computational problems with point singularities.

II. MODEL PROBLEM

The L-shape domain problem is a model academic

problem formulated by Babuška in 1986 [9, 10], to test the

convergence of the p and hp adaptive algorithms. The

problem consists in solving the temperature distribution over

the L-shape domain, presented in Fig. 1 with fixed zero

temperature in the internal part of the boundary, and the

Neumann boundary condition prescribing the heat transfer on

the external boundary.

 Fig. 1. The L-shape domain model problem.

Fig. 2. The solution of the L-shape domain model problem.

Linear Computational Cost Graph Grammar Based Direct

Solver for 3D Adaptive Finite Element Method

Simulations

Anna Paszyńska, Piotr Gurgul, Marcin Sieniek, and Maciej Paszyński

225DOI: 10.7763/IJMMM.2013.V1.48

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013August

There is a single singularity in the central point of the

domain (the gradient of temperature goes to infinity, compare

Fig. 2), so the accurate numerical solution requires a

sequence of adaptations in the direction of the central point.

The problem can be summarized as follows:

Find the temperature distribution

  RxuxRu 2: (1)

such that

0
2

1
2

2






i ix

u
 in  (2)

with boundary conditions

0u on D (3)

g
n

u





 on N (4)

with n being the unit normal outward to  vector, and

being defined in the in the radial system of coordinates with

the origin point O presented in Fig. 1. Equation (5) is

actually based on the exact solution to the L-shape problem.

  






 


2
sin, 3

2

3

2

 rrg (5)

III. FICHERA PROBLEM

The Fichera problem constitutes the generalization of the

L-shape domain problem into three dimensions. It can be

summarized in the following way: Find the temperature

distribution   RxuxRu 3: over the domain

presented in Fig. 3 such that

0
3

1
2

2






i ix

u
in  (6)

with boundary conditions

0u on D (7)

g
n

u





 on N (8)

with n being the unit normal outward to  vector, and g is

the exact solution of the L shape problem.

Fig. 3. Domain visualization for the Fichera problem

Fig. 4. The sequence of meshes generated by the self-adaptive hp-FEM for

the Fichera problem. Different colors denote different polynomial orders of

approximations presented in Fig. 3.

Fig. 5. The sequence of meshes generated by the self-adaptive h-FEM for the

Fichera problem with fixed p=5.

IV. AUTOMATIC HP-ADAPTATION

A. Exponential Convergence

The presented problems have been solved by both

self-adaptive hp-FEM and h-FEM (with constant polynomial

approximation level p=5). Only hp-adaptive FEM is

guaranted to deliver exponential convergence of the

numerical error with respect to the mesh size [2], [3]. See

Table I to compare convergence rates for both methods.

TABLE I: CONVERGENCE RATES OF THE SELF-ADAPTIVE H-FEM (LEFT)

AND HP-FEM (RIGHT) FOR THE FICHERA PROBLEM.

N Error N Error

1206 5.06 665 9.75

8261 3.18 846 6.18

13726 2.46 1093 4.58

 19191 2.23 1577 3.55

35586 2.15 2247 2.91

 3493 2.51

The basic idea behind hp-FEM has been explored further

in this paragraph.

226

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013August

B. Mesh Refinements

Generally, the quality of the solution can be improved by

the expansion of the approximation base. In FEM terms, this

could be done thanks to two kinds of mesh refinements:

1) P-refinement – increase order of the basis functions on

the elements where the error rate is higher than desired.

More basis functions in the base mean smoother and

more accurate solution but also more computations and

the use of high-order polynomials often leads to

undesirable side-effects (e.g. Runge effect).

2) H-adaptation – split the element into two or four in

order to obtain finer mesh. This idea arose from the

observation that the domain is usually non-uniform and

in order to approximate the solution fairly some places

require more precise computations than others, where

the acceptable solution can be achieved using small

number of elements. The crucial factor in achieving

optimal results is to decide if a given element should be

split into two parts horizontally, into two parts vertically,

into four parts (both horizontally and vertically) or not

split at all. The refinement process is fairly simple in 1D

but in 2D and 3D many refinement rules to follow are

being enforced.

C. Automated Hp-Adaptation Algorithm

Neither p- nor h-adaptation guarantee error rate decrease

that is exponential with a step number. This can be achieved

by combining these two methods. In order to identify the

most sensitive areas at each stage dynamically, and improve

the solution as much as possible, we employ the self-adaptive

algorithm that decides whether a given element should be

further refined or is already fine enough for the satisfactory

solution. These steps have been summarized in Alg. 1.

1: function adaptive_fem(initialmesh , desirederr)

2: initialcoarse mesh=mesh

3: repeat

4: coarseu = compute solution on coarsemesh

5: finemesh = copy coarsemesh

6: divide each element of finemesh into two new elements

7: increase order of functions on each element of finemesh by 1

8: fineu = compute the solution on finemesh

9: for each element κ of finemesh do

10: Kerr = compute error decrease rate on K

11: end do

12: adaptedmesh = copy coarsemesh

13: for each element κ of adaptedmesh do

14: if Kerr > threshold * maxerr then

15: divide K

16: end if

17: end do

18: enforce adaptedmesh integrity

19: coarsemesh = adaptedmesh

20: until maxerr < desirederr

21: return finemesh

22: end function

Alg. 1. hp-adaptive PBI pseudocode

We iterate until the solution on the given mesh reaches

satisfactory error rate (lines 3-20). First, we compute the

solution on the initial mesh, called coarse mesh. Next, we

create its copy called fine mesh and perform both h- (line 6)

and p-refinement (line 7) on each element  . Then, we

compute the solution fine mesh and for each element  we

evaluate relative error decrease. If it is satisfactory (here we

can assume threshold = 0.3, see line 14), we keep the

hp refinement on that element, since it was a justified

decision. Otherwise, we skip the refinement for such

element. More details can be found in [2].

V. GRAPH GRAMMAR MODEL

The input for the solver algorithm is the locally refined

computational mesh represented as a graph. The mesh is

obtained by executing a sequence of graph grammar

productions, summarized in Fig. 6 and 7.

Fig. 6. Graph grammar production for generation rectangular finite element

The computational mesh is further h-refined, which is

expressed by graph grammar production summarized in Fig.

8. Selected rectangular elements are broken into 8 new son

elements with 12 new faces.

In addition to that, the solver algorithm obtains a sequence

of element matrices, one matrix for each sub-graph of the

mesh representing a single finite element, resulting from

discretization of the computational problem. The solver

algorithm browses the graph representation of the mesh from

bottom elements up to the root elements, and it merges the

element matrices into only one frontal matrix. It first

identifies fully assembled nodes located within each level of

the graph representation of the mesh, eliminates them, and

then it iterates the process by going up to the next level. This

pattern for elimination ensures that the size of a single frontal

matrix involved in the solver algorithm remains constant.

The solver algorithm is expressed as graph grammar

productions coloring graph nodes, as it is presented in Fig. 9,

10 and 11.

227

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013August

Fig. 7. Graph grammar production for identification of common faces of two

adjacent elements.

Fig. 8. Graph grammar production for adaptation of rectangular finite

element.

VI. LINEAR COMPUTATIONAL COST OF THE SOLVER

ALGORITHM

Since the cost at each step (level of the elimination tree) is

constant, the total cost of the algorithm is proportional to the

number of levels, which by grid construction is proportional

to the number of unknowns. As a result, we obtain a solver

algorithm with linear computational cost with respect to the

number of unknowns.

This theoretical estimation has been verified

experimentally, as it is presented in Fig. 12. It must be also

clearly stated that the theoretical proof of the linear cost has

been so far conducted only for h-FEM with fixed p only. For

hp-FEM, where p may be different for each element, linear

complexity has not been proven yet. On the other hand,

experimental results show that solver’s complexity is for

hp-FEM is very close to linear, compare Fig. 13.

Fig. 9. Coloring of graph nodes for elimination of the deepest level in the

adaptive mesh. The red nodes denotes fully assembled nodes, the yellow

nodes denotes interface nodes. The size of the frontal matrix is equal to the

number of yellow and red nodes, and we eliminate all red nodes.

Although the linear solver code that was used to produce

the results was only a proof-of-concept, not optimized

implementation, it already has delivered very promising

performance.

The presented linear cost solver can help to dramatically

lower the computational intensity of the existing h- and

hp-FEM solutions. In terms of future work, it is important to

transform the solver algorithm into efficient production code

that could be easily applied to the large scope of problems.

Fig. 10. Coloring of graph nodes for elimination of the next level in the

adaptive mesh

228

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013August

Fig. 11. Coloring of graph nodes for elimination of the top level in the

adaptive mesh. This time both red (internal) and yellow (boundary) nodes are

fully assembled and can be eliminated.

Fig. 12. Linear computational cost of the h-adaptive solver algorithm

Fig. 13. Almost linear computational cost of the hp-adaptive solver

algorithm

REFERENCES

[1] T. J. R. Hughes, Linear static and dynamic finite element analysis,

Dover Publications, 2000.

[2] L. Demkowicz, Computing with Hp-Adaptive Finite Elements, vol. 1,

One and Two Dimensional Elliptic and Maxwell Problems, Chapmann

& Hall / CRC Press, 2006.

[3] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and

A. Zdunek, Computing with Hp-Adaptive Finite Elements, vol. 2,

Frontiers, Three Dimensional Elliptic and Maxwell Problems with

Applications, Chapmann & Hall / CRC Press, 2007.

[4] L. Demkowicz, P. Gatto, J. Kurtz, M. Paszyński, W. Rachowicz,

E. Bleszyński, M. Bleszyński, M. Hamilton, C. Champlin, and

D. Pardo, “Modeling of bone conduction of sound in the human head

using hp-finite elements: code design and verification,” Computer

Methods in Applied Mechanics and Engineering, pp. 1757–1773, vol.

200, Issues 21-22, 2010.

[5] M. Paszyński and R. Schaefer, “Graph grammar driven parallel partial

differential equation solver,” Concurrency and Computations, Practise

and Experience, vol. 22, no. 9, pp. 1063-1097, 2009.

[6] I. S. Duff and J. K. Reid, “The multifrontal solution of unsymmetric

sets of linear systems,” SIAM Journal on Scientific and Statistical

Computing, vol. 5, pp. 633-641, 1984

[7] P. Geng, T. J. Oden, and R. A. van de Geijn, “A Parallel Multifrontal

Algorithm and Its Implementation,” Computer Methods in Applied

Mechanics and Engineering, vol. 149, pp. 289-301, 2006.

[8] N. Collier, D. Pardo, L. Dalcin, M. Paszyński, and V. Calo, “The cost

of continuity: A study of the performance of isogeometric finite

elements using direct solvers,” Computer Methods in Applied

Mechanics and Engineering, vol. 212-216, 2012, pp. 353-361.

[9] I. Babuška and B. Guo, “The hp-version of the finite element method,

Part I: The basic approximation results,” Computational Mechanics,

vol. 1, pp. 21-41, 1986.

[10] I. Babuška and B. Guo, “The hp-version of the finite element method,

Part II: General results and applications,” Computational Mechanics,

vol. 1, pp. 203-220, 1986.

Anna Paszyńska was born in Krakow, Poland,

24.09.1976. She received Master Degree in computer

science from Jagiellonian University, Krakow, Poland in

2001. She received her Ph.D. in computer science from

the Institute of Fundamental Technological Research of

Polish Academy of Sciences in Warsaw, Poland, in 2007.

She currently works as an ASSISTANT PROFESSOR at

Faculty of Physics, Astronomy and Applied Computer

Science at the Jagiellonian University in Kraków, Poland. Her research

interests include evolutionary algorithms, graph grammars and computer

aided design. Her recent publications include:

A graph grammar model of the hp adaptive three dimensional Finite

Element Method. P. 1 / Anna Paszyńska, Ewa Grabska, Maciej Paszyński //

Fundamenta Informaticae ; 2012 vol. 114 no. 2 s. 149–182 IF: 0.522

A graph grammar model of the hp adaptive three dimensional Finite Element

Method. P. 2 / Anna Paszyńska, Ewa Grabska, Maciej Paszyński //

Fundamenta Informaticae ; 2012 vol. 114 no. 2 s. 183–201 IF: 0.522

Graph grammar based model for three dimensional multi-physics simulations

/ Maciej Paszyński, Anna Paszyńska, Robert Schaefer, Advances in

intelligent modeling and simulation : simulation tools and applications,

Berlin ; Heidelberg : Springer-Verlag, 2012, s. 299–324

Piotr Gurgul was born in May 6th 1987 in Krakow,

Poland. He graduated from a combined Master of

Science and Bachelor of Engineering in Computer

Science program at the AGH University of Science and

Technology in Krakow, Poland in 2011 and from a

Bachelor of Business Administration in Management

from Krakow University of Economics in 2012.

Currently he is a PH.D. CANDIDATE and a second year

PH.D STUDENT at the AGH University of Science and Technology. His

scientific interests focus on hp-adaptive finite element method, and adaptive

solvers.

His work has been rewarded with multiple scholarships, including Polish

Ministry of Science and Higher Education stipend in 2009, 2010 and 2011

and European Union Scholarship for Young Scientists. He has also

completed a bunch of professional internships overseas, including Google in

the US and Australia and Microsoft Corp. in USA.

Marcin Sieniek was born in Sep 3rd 1987 in Krakow,

Poland. He graduated from a combined Master of Science

and Bachelor of Engineering in Computer Science

program at AGH University of Science and Technology

in Krakow, Poland in 2011 and from a Bachelor of

Business Administration in Management program from

Krakow University of Economics in 2012.

Between 2009 and 2012 he worked professionally with

the industry leaders such as NVIDIA Corp, Google GmbH and Bloomberg

L.P. Currently he is a PH.D. STUDENT in Computer Science at AGH

University of Science and Technology and runs a startup project aiming to

enhance student collaboration in the educational process. His research

interests include finite element method, projection techniques as well as

management and transfer of innovations.

Mr. Sieniek has been awarded with multiple stipends and honors, including

Polish Ministry of Science and Higher Education stipend (2010), Mayor of

Krakow municipal award for scientific impact on the City of Krakow (2008)

and a regional Sapere Auso award for special scientific achievements (2008

and 2010).

229

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013August

Maciej Paszynski was born in 12 October 1974 in

Krakow, Poland. He got Master Degree in Computer

Science from Jagiellonian University, Krakow, Poland

in 1999. He got PhD in Computer Science with

applications to mathematics in 2003 from Jagiellonian

University, Krakow, Poland. He got Habilitation in

Computer Science from AGH University of Science

and Technology, Krakow, Poland in 2010. He got the

Computer Science Associated Professor position from AGH University of

Science and Technology, Krakow, Poland in 2013.He worked as

PROGRAMMER / SOFTWARE ENGINEER in RoboBAT company (later

bought by AutoDESK) in years 1999-2003 in Krakow, Poland.

In 2003–2005, he worked as a POSTDOCTORAL FELLOW at the

Institute for Computational Engineering and Sciences (ICES) at The

University of Texas at Austin. In summer 2006 and 2007 he worked as a

POSTDOCTORAL FELLOW at the Department of Petroleum and

Geosystems Engineering at The University of Texas at Austin. Since 2007 he

is a frequent VISITING PROFESSOR at ICES at The University of Texas at

Austin, USA, at Basque Center for Applied Mathematics (BCAM), at the

Department of Mathematics, Universidad del Pais Vasco, Bilbao, Spain and

at King Abdullah University of Science and Technology (KAUST), Saudi

Arabia.

 Prof. Maciej Paszynski is a main chairman of the International Conference

on Computational Science ICCS Workshop "Agent based

simulations,adaptive algorithms and solvers" since 2007.

230

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013August

