Radiotherapy of the Excretable Radioactive Gold Nanocomposite with Intratumoral Injection

Fong-Sian Lin, Chien-Hung Chen, Fan-Gang Tseng, Yeukuang Hwu, Jen-Kun Chen, Shu-Yi Lin, and Chung-Shi Yang

Abstract—We synthesized excretable radioactive gold nanoparticles at gum arabic (198AuNPs@GA) for radiotherapy. The nanocomposite of AuNPs@GA was first synthesized by synchrotron X-ray. After neutron activation, the nanocomposite of AuNPs@GA formed radioactive 198AuNPs@GA in which the radioisotope of 198Au can generate β particles (β_{max} = 960 keV) and gamma ray (E_{gamma} = 412 keV) to kill cancer cells and suppress tumor growth. The efficacy of radiotherapy was evaluated with H460 tumor model by intratumoral injection. At day 7 after intratumoral administration of 198AuNPs@GA, the tumor was significantly suppressed over 90% (P < 0.01), compared to the controls. Intratumoral injection with 198AuNPs@GA did not cause serious weight loss of mice. After 2-weeks observation period, 198AuNPs@GA was still mainly accumulated in the tumor. Interestingly, excretion of 198AuNPs@GA in feces and urine was observed from first day to the endpoint of experiment. In this study, the radioactive 198AuNPs@GA nanocomposite not only successfully suppressed tumor growth but also could be excreted through urine and feces, eliminating possible toxic concerns of nanomaterial accumulation in vivo.

Index Terms—Gold nanoparticles, gum arabic, radiotherapy, synchrotron X-rays irradiation.

I. INTRODUCTION

Radiotherapy has been applied as a part of treatment and prevents tumor recurrence before and after a surgery for a primary malignant tumor, respectively [1], [2]. Various radiation sources from machines and radionuclides are practically used in clinical treatments, which can be further classified into external beams and radioactive seed implants for radiotherapy. For deep tumors, the external radiation has to go through normal tissues that may cause damages and health hazards, and therefore radioactive implants are developed to treat the tumors in limited spatial localization [3]. Since the nanotechnology was studied for decades, the nanomaterials have been designed to target a tumor by the unique physical-chemical properties [4]. By combination of nanotechnology and radiotherapy, various radioisotopes, such as 64Cu, 90Y, 111In and 166Ho, can be fabricated to form nanoparticles or incorporated with nanoparticles as nanocomposites for radiotherapy [5], [6].

Gold is a well-studied element that can be synthesized to form nanomaterials from subnanometer clusters to more than 100 nm nanoparticles [7]. After neutron activation, gold-198 (198Au) is also one of the promising radionuclides for radiotherapy [8]-[10]. The radioisotope of 198Au can generate β particles (β_{max} = 960 keV) to kill cancer cells and gamma ray (E_{gamma} = 412 keV) for gamma imaging or single photon emission computed tomography (SPECT). However, when the gold nanoparticles (AuNPs) are used in biological environment, surface modifications are necessary for stabilizing the nanoparticles and preserving their properties. After the in vivo use of nanomaterials, long-term accumulation of the nanomaterials may increase conceivable hazards of the living body [11], [12]. In order to minimize the toxicity concern, the quantum dot with size smaller than 5.5 nm has been reported that can be rapidly and efficiently excreted in urine [13]. Therefore, the design of nanocomposites with the organic template for stabilizing excretable nanomaterials is expected to maintain functions and to increase the potential uses as nanomedicines [14]-[16].

In this study, we first synthesized a nanocomposite of gum arabic stabilized AuNPs (AuNPs@GA) by exposing the mixture of HAuCl4 and GA solution under synchrotron X-ray. The resulting AuNPs@GA was further neutron-activated to generate radioactive 198AuNPs@GA which was evaluated with radiotherapy and toxicity by intratumoral injection. The endpoint biodistribution and excretion of 198AuNPs@GA were measured to assess the problem of nanomaterial accumulation.

II. EXPERIMENTAL SECTION

A. Preparation of 198AuNPs@GA

Briefly, AuNPs@GA was first synthesized by irradiating the mixture that contained 1 mL of 0.2% HAuCl4 solution and 1 mL of 4% (w/v) aqueous GA in 5 mL deionized water. The reaction was accomplished in 5 minutes by irradiated with synchrotron X-rays (beam-line B101A of the National Synchrotron Radiation Research Center, Hsinchu, Taiwan) at room temperature. No chemical reducing agents or catalysts were used for the reaction.

The X-ray produced solution of AuNPs@GA was ultrafiltered with a Vivaspin 500 centrifugal concentrator (molecular weight cutoff 100 kDa) and washed three times with deionized water to remove residual gold ions. Neutron activation of AuNPs@GA was carried out in an Open-Pool...
Reactor (National Tsing Hua University, Hsinchu, Taiwan) with thermal neutrons \((7.42 \times 10^{12} \text{ n cm}^{-2} \text{ s}^{-1}) \) and fast neutrons \((1.02 \times 10^{13} \text{ n cm}^{-2} \text{ s}^{-1}) \). The AuNPs@GA after neutron activation formed \(^{198}\text{AuNPs@GA}\) in which the radioactive \(^{198}\text{Au}\) can generate \(\beta \) particles (\(\beta_{\text{max}} = 960 \text{ keV}\)) for radiotherapy.

B. Animal Experiments of Radiotherapy

Male NU/NU mice of 7 weeks old weighing 25–30 g were used for the studies. Tumor-bearing mice were performed by subcutaneous injection with \(2 \times 10^6 \) cells of H460 which were suspended in RPMI medium contained 10% FBS and kept the tumor growing to around 200 mm\(^3\) for radiotherapy of \(^{198}\text{AuNPs@GA}\). The injections were well tolerated and no adverse effects were observed during the 24 h observation period. The \(^{198}\text{AuNPs@GA}\) suspension was injected intratumorally to nude mice (\(N = 4 \)) at a dose of \(103.00 \pm 1.31 \mu\text{Ci/mouse} \) for tumor suppression. The volume of injection was adjusted to 100 \(\mu\text{L} \) per mouse. The nude mice were euthanatized until two weeks. Blood was collected through retro orbital plexus region in the heparinized glass tube. Further, the mice were sacrificed by 100% \(\text{CO}_2 \) and tissues including heart, liver, lung, spleen, kidney, stomach, pancreas, brain, intestine and carcass were collected. Urine and feces were collected at each time point. Organs, urine and feces were collected in a bottle and analyzed by \(\gamma \) counter (2480 WIZARD\(^2\), PerkinElmer). All the irradiation data were deduced from 2.7 days of \(^{198}\text{Au}\) half-life to obtain the accurate amount.

III. RESULTS AND DISCUSSION

The synthesis of AuNPs@GA is a one-step reaction by exposing HAuCl\(_4\) and GA solution under synchrotron X-ray. Briefly, gold ions can be efficiently reduced by the hydrogen radicals and solvated electrons that are generated from photolysis of water under X-ray irradiation [17]. During the reduction, GA serves as a template to confines the growth of AuNPs [18]. This synthesized nanocomposite of AuNPs@GA comprises 2 nm AuNPs in GA and the hydrodynamic size is about 60 nm. Fig. 1 shows the transmission electron microscopy (TEM) images of AuNPs@GA observed by negative stain with uranyl acetate. The size of AuNPs@GA observed in TEM is about 50 nm that is slightly smaller than hydrodynamic size in dynamic light scattering (DLS) because of the dehydration of the nanocomposite in TEM observation.

The solution of AuNPs@GA synthesized by X-ray was ultrafiltered to remove the trace gold ions that could be possibly interfered with the data assessments. The AuNPs@GA was subsequently activated by hot neutrons to form radioactive \(^{198}\text{AuNPs@GA}\) for radiotherapy. The \(^{198}\text{Au}\) is dominantly following \(\beta \) decay to produce \(\beta \) particles for tumor treatment and has been approved by FDA. The efficient radius of therapy is 1-10 mm in tissue [10]. Tumor suppression was evaluated by intratumoral injection of \(^{198}\text{AuNPs@GA}\) (103.00 \(\pm \) 1.31 \(\mu\text{Ci/mouse} \)) (Fig. 2a). The radioactive \(^{198}\text{AuNPs@GA}\) can significantly suppress the growth of tumor more than 90% (\(P < 0.01 \)) at day 7 after injection (Day 17), compared to the control and the non-radioactive AuNPs@GA treatment. Additionally, toxicity was evaluated by estimation of body weight loss (Fig. 2b). After injection of \(^{198}\text{AuNPs@GA}\), the mice showed a slight decrease (< 20%) during 4 days. At day 7 after injection (Day 17), the body weight was recovered and showed continuous increases in the following days, indicating that \(^{198}\text{AuNPs@GA}\) is safe for treatment.

![Fig. 1. TEM images of the AuNPs@GA nanocomposite observed by negative staining with uranyl acetate (inset, magnified image).](image1)

![Fig. 2. Intratumoral injection of \(^{198}\text{AuNP@GA}\) was evaluated with radiotherapy and toxicity. Tumor suppression curve (a) and body weight loss of mice (b) were shown for therapeutic efficacy and health of mice, respectively. The symbols of square, circle, and triangle stand for the control and the treatment of non-radioactive AuNP@GA and \(^{198}\text{AuNP@GA}\), respectively. The arrow indicates the injection of \(^{198}\text{AuNP@GA}\). (* P < 0.01)](image2)

![Fig. 3. (a) Biodistribution of \(^{198}\text{AuNPs@GA}\) was analyzed after 2-weeks observation period. (b) Accumulated excretion of \(^{198}\text{AuNPs@GA}\) in urine and feces were measured at each time point during the treatment.](image3)
Fig. 3a shows the endpoint biodistribution of AuNPs@GA which was monitored after intratumoral injection up to two weeks. The major accumulation was 50.0% in the tumor, following by 8.9% in the liver. Meanwhile, the clearance increase of AuNPs@GA was observed in urine and feces. Fig. 3b shows accumulated amount of excretion in urine and feces at each time point. The AuNPs@GA with a large hydrodynamic size can efficiently accumulate in the tumor by intratumoral injection [15]. We proposed that the fine-sized AuNPs (< 2 nm) were released into circulation system following the excretion pathway after GA degradation. The results demonstrated that the AuNPs@GA not only had excellent efficiency to suppress tumor growth but also could be excreted possibly by the renal and hepatobiliary systems.

IV. CONCLUSIONS

In this study, we synthesized the radioactive AuNPs@GA via intratumoral injection for tumor suppression and excretion of the fine-sized AuNPs were observed after the treatment. Intratumoral injection of AuNPs@GA was capable to keep the materials in the tumor site, and then the radioactive AuNPs could generate β particles to kill tumor cells and suppress the tumor growth. After the treatment, the fine-sized AuNPs were observed in urine and feces, which were possibly excreted by renal and hepatobiliary systems. The nanocomposite of AuNPs@GA can take advantages in therapeutic level for cancer treatment, and their body-excretion can be expected to minimize toxicity concerns from long-term accumulation in vivo.

ACKNOWLEDGMENT

Authors are grateful to the technical assistance from Yu-Ching Chen (NM-101-PP-12) for TEM measurement.

REFERENCES

Fong-Sian Lin received his M.S. in Chemistry from Nation Cheng Kung University in 2007 and started his Ph.D. degree at department of Materials and System Science, National Tsing Hua University under the advice of Prof. Chung-Shi Yang of the National Health Research Institutes and Prof. Fan-Gang Tseng of ESS Department, NTHU. He currently does his research in Center for Nanomedicine Research, NHRI. His research focuses on using radiation to synthesize biopolymers and nanoparticles, material characterization and evaluating the materials for biomedical applications.

Chien-Hung Chen received his master degree in Microbiology and Public Health from National Chung Hsing University College of Veterinary Medicine in 2003. He had been as a research assistant in Dr. Jun-Yang Liao’s groups at the Institute of Cell and System Medicine, National Health Research Institutes (NHRI). He is currently the technician in the Center for Nanomedicine Research, NHRI. His research focuses on the radiative gold nanoparticles for biomedical and clinical applications.

Fan-Gang Tseng received his Ph.D. degree in Mechanical Engineering from the University of California, Los Angeles, USA (UCLA) in 1998. He is currently the Chairman of the ESS Department, NTHU, and the Deputy Director of the Biomedical Technology Research Center, NTHU. His research interests are in the fields of Bio-MEMS/Bio-Nano, nano/microfluidic systems, and micro fuel-cells. He received 32 patents, wrote 5 book chapters, published more than 105 SCI Journal papers and 300 conference technical papers in MEMS, Bio-N/MEMS, and micro/nano fluids related fields, and served as a technical committee member, as well as a co-chair, in many international conferences including MiroTAS, IEEE MEMS, IEEE Transducers, IEEE Nano, and IEEE NEMS, and has been a reviewer for more than 30 SCI-cited journals.
Yeukuang Hwu received his Ph.D. in Physics from the University of Wisconsin Madison. He is currently a research fellow at the Institute of Physics, Academia Sinica. He also served as faculties in the Department of Engineering and System Science, National Tsing Hua University (Hsinchu, Taiwan), and the Advanced Optoelectronic Technology Center, National Cheng Kung University (Tainan, Taiwan). Dr. Hwu is a co-author of more than 240 peer-reviewed journal publications, 2 book chapters. Dr. Hwu’s current research interests mainly focus on developing nanoscale X-ray imaging techniques for biomedical and clinical applications.

Jen-Kun Chen received his M. Sc. in nuclear science and Ph. D. in chemistry from National Tsing Hua University (NTHU) Taiwan in 2004 and was the postdoctoral research fellow in Director Chung-Shi Yang’s groups at the Center for Nanomedicine Research in National Health Research Institutes (CNMR/NHRI). His research interests are in the fields of radioanalytical chemistry, animal molecular imaging, and tracing nanoparticle in vivo, and nanoparticle exposure induced lung injury.

Shu-Yi Lin received her Ph.D. from National Tsing Hua University, Taiwan, in 2002, and is currently the Assistant investigator of the Center for Nanomedicine Research, National Health Research Institutes (NHRI, Zhunan, Taiwan). Dr. Lin’s major research interests focus on the development and biological applications of various nanoparticles and fluorescent nanoclusters.

Chung-Shi Yang received his Ph.D. in Chemistry from the Pennsylvania State University; He had been as a PI in Department of Medical Research, Taichung Veterans General Hospital (Taichung, Taiwan), during this period he received the Young Investigator Award from the Federation of Asian Chemical Societies (FACS). He then served as a faculty in the Department of Applied Chemistry, National Chi-Nan University (Puli, Taiwan). Dr. Yang is currently the Distinguished Investigator and Director of the Center for Nanomedicine Research, National Health Research Institutes (Zhunan, Taiwan). Dr. Yang is a co-author of more than 120 peer-reviewed journal publications, 4 bookchapters. Dr. Yang’s current research interests mainly focus on the nanoparticle based formulation for biomedical and clinical applications.