Nanomaterials for Construction Engineering-A Review

B. B. Das and Arkadeep Mitra

Abstract—Nanotechnology is not new and is known to exist for ages, be it in the sword of tipu sultan or in the windows of the medieval churches in Europe. A common question in the minds of all of us living in today’s world is about how the mechanism of nanotechnology can be used in the healthy compatibility with the constructional structures like that of massive buildings and bridges, which have been thought to encroach upon huge masses of land, leading to the destroying of homes of wildlife and putting pressure in the limited reserves of energy. This review paper focuses on the sustainable usage of nano based materials like carbon nanotube, electrochromic windows, nanoclays, sandvik nanoflex™, nanowires, titanium dioxide, nanoceramic coating, nanocrystalline materials, nanosilica, nanocomposites, MMFX2 steel, nanomotels, nanofibres, nanomyte™ mend MW, nanocement, which could be used for providing singular or multiple functions of potential reinforcement, corrosion resistance, insulation, fire protection, temperature resistance, reducing air conditioning loads, pollution control, UV ray absorption, lighting, when used as a part of building materials.

Index Terms—Nanotechnology, construction, materials.

I. INTRODUCTION

Nanotechnology concerns with the usage of materials falling in range of few to less than 100 nanometers [1]. Constructional structures form a very important part while contributing to the GDP of any economy by rendering services ranging from transportation to living to producing useful products to earning livelihood, and at the same time also commanding a very dominant share of the energy produced for utilization, no wonder that it has been estimated by a certain source that construction industry involving nanotechnology will occupy the eighth position out of the ten, having an impact on the world’s development [2]. The usage of nanotechnology materials while being incorporated in constructional structures would not only help in prolonging their lifetime, but would also keep a check on the energy spent by them and at the same time gauging their reactions and reacting to different agents like fire, corrosion, water penetration, fractures, cracks, etc. Hence the literature segment of this review paper provides a list of nano-materials that can be used for these varied tasks.

II. CARBON NANOTUBES

Laser ablation, chemical vapor deposition, electric arc processes are some of the methodologies employed for the production of NT’s (nanotubes) that exist as metals or semiconductors. Exhibiting sp² hybridization with walls of graphene held together in hexagonal arrays by van-der-waal force of a cylindrical honey comb like structure of an allotrope of carbon, gives a succinct definition of the carbon nanotubes (CNT’s). High conductivity (being more than copper), elastic deformability, strength (being stronger than steel), surface chemistry, high stability are some of the properties that CNT’s provide due to their structure and topology and is presented in Table I. A small change, in the nanometer diameter and that in the chiral and achiral nature brings different properties in that of SWCNT’s (single walled carbon nanotubes), which comprises of single cylinder whereas that of MWCNT’s (multi walled carbon nanotubes) comprises of multiple cylinders. Increasing the strength for a longer duration of time and prolonging life along with giving boost to the compressive strength and contributing to the tensile strength by improving the flexural strength is reported from earlier research work, when CNT’s are mixed with asphalt and concrete. The stress-strain relationship of the carbon nanotubes is presented in Fig. 1. A reduction in the emission of greenhouse gases, energy consumption, maintenance costs, resistance to moisture are some of the advantages of using asphalt containing nanoparticles [3]-[19].

<table>
<thead>
<tr>
<th>Name of the property</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length to diameter ratio</td>
<td>60 (SWCNT’s)</td>
</tr>
<tr>
<td>Surface area</td>
<td>~300 m²/gm (SWNT’s)</td>
</tr>
<tr>
<td>Density</td>
<td>Less (2.60g/cm³) for MWNT’s</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>350K-8K (SWCNT’s)</td>
</tr>
<tr>
<td>Elongation</td>
<td>100% (CNT based interconnects which are stretchable)</td>
</tr>
<tr>
<td>Young’s Modulus</td>
<td>1.25 TPa (SWCNT’s), 0.9 TPa (MWCNT’s)</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.06-0.55 (SWCNT’s)</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>75 GPa (SWCNT’s) <60 GPa (MWCNT’s)</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>100-150 GPa (MWCNT’s)</td>
</tr>
</tbody>
</table>

Fig. 1. Stress stain relationships of carbon nanotubes

DOI: 10.7763/IJMMM.2014.V2.96

41
III. ELECTROCHROMIC WINDOWS

Gauging the intensity of light during alternate hours of darkness and sunlight transparency characteristics to the window are provided when removal of ions takes place due to application of high voltage and transmittance characteristics to the windows are provided with the release of chromogens and ions at low voltage due to different chromogen colors present in the tungsten oxide that acts as the electrochromic layer, from the valence band of the nickel oxide electrons escapes and the electrons jump to the W 5d states of tungsten oxide when a charge is applied, thereby helping in the color changing process to take place, capacitance is provided by the counter electrode and porous semiconductor containing working electrode is separated by the insulator layer, conducting oxides (such as Ln\textsubscript{2}O\textsubscript{3}; Sn) layer are sandwiched between two layers of glass that constitute the electrochromic windows. Between the layers of conducting oxides are squeezed more three central layers [20]-[23]. The room is bought to alternate dimness (opaque) and alternate brightness (transparency) by the mode of switch and intelligent control system, which constitutes the operation of these windows. Due to the mode of working the following chemical reactions [20] takes place:

\[
\text{WO}_3 \text{ (clear)} + x\text{M}^+ + xe^- \Rightarrow \text{M}_x\text{WO}_3 \text{ (deepblue)(M= H, L\textsubscript{n}) (1)}
\]

\[
\text{NiO (clear)} + x\text{OH} \Rightarrow \text{NiO(OH)}_x \text{ (gray) } + xe^- \quad \text{(2)}
\]

Here \(\text{WO}_3\) = tungsten oxide, \(\text{M}^+\) = cation injected from electrolyte, \(e^-\) = electron, \(\text{NiO}\) = counter electrode, \(\text{Ln}_2\text{O}_3; \text{Sn}\) = Indium Tin Oxide.

With a ¼ times [21] reduction of lighting and cooling loads reported makes these windows an indispensable part of the construction architecture. The properties of the electrochromic devices are presented in Table II briefly.

<table>
<thead>
<tr>
<th>TABLE II. THE PROPERTIES OF ELECTROCHROMIC DEVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>visible - near IR (infrared) 1.0% to 80%</td>
</tr>
<tr>
<td>Switching voltage is 0.5 - 3.0 volts</td>
</tr>
<tr>
<td>Total injected charge up to 50 mC (milli-coulomb)</td>
</tr>
<tr>
<td>Switching time : 100 m sec to 60 sec (m sec= milli second)</td>
</tr>
<tr>
<td>Memory : 1 - 24 hours</td>
</tr>
<tr>
<td>Cyclic lifetime: 10K - 5M cycles</td>
</tr>
<tr>
<td>Projected lifetime up to 20 years</td>
</tr>
<tr>
<td>Operating temperature: -30°C to 70°C (°C)</td>
</tr>
<tr>
<td>Total thickness of coatings: ~2μ (μ= micrometer)</td>
</tr>
<tr>
<td>Acceptable cost : 100$/m²</td>
</tr>
<tr>
<td>acceptable neutral color</td>
</tr>
</tbody>
</table>

IV. NANOCLAYS

An increase in density, compressive strength (Right PU foam employing nanoclays exhibit strength of 210 KPa), young’s modulus (4.18 GPa at 5% loading of nanoclay particle) and tensile strength (20.8763±0.789 MPa) along with the filling in of air gaps is reported when a combination of ordinary portland cement and nanoclays like metallic nano-kaolin is used and the same is presented in Fig. 2 and Fig. 3, respectively. Detioration of the structures is prevented by the presence of negative charges and separation of layers due to cleavages caused by penetration of water thus leading to an increase in the surface area (700-800 m²/gm), in the volcanic ash and smectite type clays [24]-[25].

![Fig. 2. Compressive strength of NMK mortar hydrated for 28 days.](image)

![Fig. 3. Tensile strength of NMK mortar hydrated for 28 days.](image)

V. SANDVIK NANOFLEX™

With a high corrosion resistance, high temperature resistance (Sandvik 12R10/ASTM 302 has a service temperature in range of - 200°C to 250°C), high ductility, high tensile strength (1700 MPa-2000 MPa), good responding capability to stress and strain, followed by an occupancy of less area makes Sandvik Nanoflex™ , a stainless steel product developed by Sandvik Materials Technology, a perfect material to be used in fire-proof fixtures and in the doors and windows of a building, thus providing more space and light. Being mechanically strong, chemical and bacteria resistant, recyclable and environment friendly makes this material quite suitable to be incorporated in the construction of sanitary areas and swimming pools [26].

VI. NANOWIRES

SEM (scanning electron microscope), TEM (transmission electron microscopy) and scanning probe techniques are the means by which nanowires can be classified. The conductance properties, localization effects vary according to the thickness of the material, which also decides on the metal to insulator transition of the nanowires. With an increase in length presence of a higher percentage of metal in the semiconductor carbon matrix is reported which helps us to conclude that above a length of 50 nm the nanowires behave as metals [27]-[29]. Physical, thermodynamical and electron
transport properties are dependent on the diameter of the nanowires. Ultraviolet nanowire lasers, bar coding, magnetic information storage are some of the effective optical applications that nanowires like ZnO (poisson’s ratio=0.349) can be put into. Linear or non-linear characteristics are exhibited by the nanowires. By acting as a fuse against higher voltages and currents, nanowires can be an indispensable part of the lighting section of construction engineering [30]-[31]. The metal to insulator transition can be calculated by using the following formula [29]:

\[w(T) = d(\ln P^4)/d(\ln T) \]

Here \(P \) = resistivity of nanowire, \(T \)= temperature, \(w(T) = \) width/thickness of the nanowire is a function of temperature i.e. width is dependent on temperature.

VII. TITANIUM DIOXIDE

TABLE III: THE FOLLOWING ARE THE PROPERTIES OF CRYSTALLINE FORMS OF TiO₂

<table>
<thead>
<tr>
<th>Polymorphs</th>
<th>Rutile</th>
<th>Rutile</th>
<th>Anatase</th>
<th>Anatase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal structure</td>
<td>Tetragonal</td>
<td>Tetragonal</td>
<td>Trigonal</td>
<td>Trigonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P4/mmm (136)</td>
<td>P4/mmm (136)</td>
<td>14/amd (141)</td>
<td>14/amd (141)</td>
</tr>
<tr>
<td>Most Stable State</td>
<td>110</td>
<td>110</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>Density</td>
<td>4.25 g/cc</td>
<td>4.25 g/cc</td>
<td>3.89 g/cc</td>
<td>3.89 g/cc</td>
</tr>
<tr>
<td>Band gap at 10 K</td>
<td>3.051 eV</td>
<td>3.035 eV</td>
<td>3.46 eV</td>
<td>3.42 eV</td>
</tr>
<tr>
<td>Spectral Dependence</td>
<td>E₁²⁵</td>
<td>E₁²⁵</td>
<td>Urbach</td>
<td>Urbach</td>
</tr>
<tr>
<td>Nature of gap</td>
<td>Indirect</td>
<td>Direct</td>
<td>Indirect</td>
<td>Direct</td>
</tr>
<tr>
<td>Static dielectric constant (in MHz range)</td>
<td>173</td>
<td>89</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td>High frequency dielectric constant (wavelength=600 nm)</td>
<td>8.35</td>
<td>6.76</td>
<td>6.25</td>
<td>6.50</td>
</tr>
<tr>
<td>Refractive index (at wavelength=600 nm)</td>
<td>2.89</td>
<td>2.60</td>
<td>2.50</td>
<td>2.55</td>
</tr>
<tr>
<td>Nature of Conductivity at room temperature (undoped)</td>
<td>n-Type semiconductor</td>
<td>n-Type semiconductor</td>
<td>n-Type semiconductor</td>
<td>n-Type semiconductor</td>
</tr>
<tr>
<td>Mott transition</td>
<td>Not Observed</td>
<td>Not Observed</td>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>Room Temperature Mobility in crystal (in cm²/VS)</td>
<td>0.1-1</td>
<td>0.1 – 1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Room Temperature mobility in polycrystalline thin film</td>
<td>0.1 cm²/VS CUA</td>
<td>0.1 cm²/VS CUA</td>
<td>0.1-4 cm²/VS</td>
<td></td>
</tr>
<tr>
<td>Electron Effective mass</td>
<td>9-13 m, 10-30 m, 12-32 m</td>
<td>9-13 m, 10-30 m, 12-32 m</td>
<td>~1 m</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV: PROPERTIES OF TITANIUM DIOXIDE CRYSTALLINE FORMS IS AS FOLLOWS:

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
<th>Type</th>
<th>Type</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
</tr>
<tr>
<td>Anatase free chalking</td>
<td>Rutile - low medium chark resistance</td>
<td>Rutile - medium chark resistance</td>
<td>Rutile - high chark resistance</td>
<td>Rutile - high chark resistance</td>
<td>Rutile - high chark resistance</td>
</tr>
<tr>
<td>Low medium percent PVC</td>
<td>Hig h percent PVC</td>
<td>Exterior coatings requiring excellent durability</td>
<td>Exterior coatings requiring excellent durability with high gloss</td>
<td>Interior - exterior coatings medium - high percent PVC</td>
<td></td>
</tr>
<tr>
<td>TiO₂, min, %</td>
<td>94</td>
<td>92</td>
<td>80</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Specific resist ance, min, Ω</td>
<td>5000</td>
<td>5000</td>
<td>300</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Moisture content as packed, %</td>
<td>0.7</td>
<td>0.7</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>3.8-4.0</td>
<td>3.6-4.3</td>
<td>3.6-4.3</td>
<td>3.6-4.3</td>
<td>4.0-4.3</td>
</tr>
<tr>
<td>45-m evm screen residue, %</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Anatase, rutile, brookite are some of the crystalline forms in which TiO₂ exists in nature. High refractive index is one of the properties of TiO₂. When exposed as a coating on the tiles of pavements, concrete, self cleaning glasses, outdoor paints, TiO₂ exhibit photocatalysis, whereby on absorption of UV rays electron-hole pair are created, which undergo further reaction to create hydroxyl radicals which oxidize pollutants.
such as oxides of nitrogen into nitrates thus helping to reduce pollution [32]-[35]. The properties of the crystalline form of TiO$_2$ are presented in Table III and Table IV.

VIII. NANOCERAMIC COATING

Being free of dyes and metals coupled with non-interference offered while working with wireless equipments and capability to reject [36] UV rays of sun (temperature resistance = 1200°C), makes shatter proof Huper optik® nanoceramic window films (poisson’s ratio = 0.44 for amorphous silicon), the perfect material for lowering cooling loads/bills and improving taste of building.

IX. NANOCRYSTALLINE MATERIALS

When applied on the construction materials besides enhancing the structural strength of the structures, nanocrystalline coating films made from the likes of materials like nickel, gold, silver and others (poisson’s ratio for nanocrystalline Cu = 0.33), also help to reduce corrosion by controlling the oxidation reactions. Varying characteristics like enhanced diffusion, shifting of zero current potential (ZCP), more number of atoms in intercrystalline regions, higher passive current (as in case of nanocrystalline Ni) marks a line of difference between properties exhibited by the nanocrystalline materials and their microcrystalline counterparts [37]-[38]. As part of the building materials, for providing of reinforcement and increasing the longevity of paints and varnishes nanocrystalline cellulose can be used [39].

X. NANOSILICA

Besides having a low cost (each gram of nanosilica costs 60 paise) budget, high compressive strength (3801 psi), tensile strength (117.7 MPa), high surface area (750 m2/gm), ability to prevent silicosis, reducing percentage of CO$_2$, nanosilica (particle size = 4-100 nm, colloidal solid percentage = 30%) also helps in checking solid waste pollution when mixed with recycled concrete aggregates [40]-[43]. Stress-strain behavior of nanosilica is presented in Fig. 4.

XI. NANOCOMPOSITES

Properties like corrosion and temperature resistance (upto 152$^\circ$ C), providing barrier against entry of gases, thermal conductivity, boosting the flexural and tensile strength (upto 770 MPa) when used in combination with a polymer, makes nanocomposite materials fit the perfect bill for being used as coatings that are resistant to wear and tear in buildings, erection of columns and decks of bridges and making structural panels [44]-[48]. The stress-strain behavior of the nanocomposite is presented in Fig. 5.

XII. MMFX$_2$ STEEL

For the construction of bridges desirable properties like, requirement of less steel, higher yield strength, longer lasting, high corrosion resistance, lower maintenance, labor, production, installation costs when compared to conventional carbon steel, keeping a check of growth of micro [49] -galvanic cells by means of a microstructure, are exhibited by a material which goes by the name of MMFX$_2$ steel [49]-[53].

XIII. NANOMETALS

Being light weight, self healing i.e. exhibiting different properties viz. soft or hard, when the need arises, mechanically stronger and more durable when compared to the microscopic particles makes nanometals like nanosilver find application in electrical contacts, indoor insulation purposes of buildings whereas others find application in being parts of circuit boards [54]-[56].

XIV. NANOFIBRES

High temperature withstanding(upto 300$^\circ$C in case of Aramid Nanofibre) insulation (0.96 for 10% weight of carbon nanofibres put into graphite, other sources say that graphitized ones have a value of 0.0520) services are provided by the nanofibres. Temperatures are brought down in summer by presence of thin film nano-scale stainless steel coatings in masa curtains [57]-[58].

XV. NANOMYTE™ MEND MW

Being free from solvents and volatile organic compounds (VOC) coupled with self healing property makes it desirable
for using Nanomyte™ Mend MW in the construction architecture [59].

XVI. NANOCEMENT

A combination of nanosilica, sodium aluminate, and sodium hydroxide gives nanocement. Reducing carbon-dioxide emissions alongside providing high compressive strength (50% replacement of nanocement along with mortar gives strength up to 86.97 N/mm² at the end of 21 days) [60]-[61] and avoiding air gaps by virtue of large specific surface area (3582400 cm²/gm) are some of the properties offered by addition of nanocement to the construction materials. Reduction of penetration of water, filling up air spaces, increasing compressive strength over a prolonged period of time are some of the positive results obtained on mixing nanoparticles like CNT’s and composites, in the conventional cement. High magnitudes of tensile and flexural strength that is strong enough to withstand vibrations due to earthquakes with a prolonged longevity coupled with immunity against attack of corrosion, chemicals, penetration of water, is obtained on incorporation of nanocement fibers in the ultra high performance materials [62]-[63].

XVII. CONCLUSION

An extensive literature review was conducted into the properties and applications of nanomaterials that make them useful as a part of the construction materials. This would significantly help the readers such as civil engineers, architects, contractors for quickly getting an idea of the availability of the nanomaterials that can be considered in the design of sustainable and durable structures.

REFERENCES

[34] Dupont™ ti-pure® titanium dioxide for coatings, H-65969-2 (06/07).

[53] Z. Ge and Z. L. Gao, “Applications of nanotechnology and nanomaterials in construction,” in Proc. First International Conf. on

B. B. Das is currently serving as a senior associate professor and centre head at National Institute of Construction Management and Research (NICMAR), Goa campus. He has been working as a post-doctoral research associate and adjunct professor in the Department of Civil Engineering at Lawrence Technological University, Southfield, Michigan, USA. His area of research includes bridge engineering and project management, energy efficiency, green construction management, macrostructure characterization of materials, non-destructive testing of concrete structures, corrosion of reinforcement and durability studies on concrete.

Arkadeep Mitra has successfully furnished his undergraduate studies in electrical engineering from KIIT Deemed University, Bhubaneswar, Odisha.