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Abstract—In this paper, we propose a stochastic 

programming approach to manage supply chain disruptions of 

an enterprise with an emphasis on demand and disruptions 

uncertainty. The supply chain considered here is multi-product, 

multi-agent in nature. However, the model considers purchasing 

cost, inventory cost and emergency ordering cost. Decisions such 

as ordering quantities in pre-disruptions and post-disruptions 

situation are taken into consideration. On the other hand, 

quality and delivery performance requirements are also 

included in the proposed analytical framework. We use Monte 

Carlo sampling approach for the purpose of sampling for a 

given probability distribution of stochastic parameters. In 

addition, we consider a disruptions planning case study and 

apply Benders decomposition (BD)/L-shaped algorithm to solve 

the model. The model is coded on GAMS 24.1.3 and run by 

CPLEX (12.5.1.0) and DECIS solver. We minimize total cost 

that includes first stage cost and second stage disruptions 

scenario cost. Several test instances with different disruptions 

scenarios are considered. We then compare the total costs under 

several disruptions scenarios. We hope that the model could be 

used as an effective tool to analyze and decide on supply chain 

disruptions planning and management of an enterprise thus it 

could contribute in continuity of manufacturing/business 

operations and therefore help in building a resilient supply 

chain. 

 
Index Terms—Stochastic programming, supply chain 

disruptions, benders decomposition, Monte Carlo simulation. 

 

I. INTRODUCTION 

Rapid globalization has introduced immense supply chain 

disruptions risk on the agents of a corporate supply chain with 

devastating impacts in an interconnected and interrelated 

nature. Some recent examples include earthquakes, tsunami, 

economic crises, supplier bankruptcy, SARS, strikes, terrorist 

attacks, etc. that have been imposing threat on market share 

and enterprise existence. Hendricks and Singhal reports that 

supply chain disruptions have long term negative effects on 

the supply chain financial performance. For example, some 

companies suffer 33-40% lower stock returns than expected 

as a result of disruption [1]. Traditional supply chain can 

perform well under a disruptions free environment. But, 

disruptions to supply chain are almost inevitable in today’s 

complex dynamic settings with prevailing time sensitive 

turbulent business environment. In the real world, disruptions 

do occur and the best business plans are those that anticipate 

and prepare for this inevitability, in particular in dealing with 

foreign suppliers [2]. Thus, the researchers in the area of 
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supply chain risk management in recent years are motivated to 

explore the response mechanisms while a disruption takes 

place in any components of a supply chain. Despite the 

importance of disruptions management to sustain the 

competitive edge, little research [1], [3] has been conducted 

in the important area of supply chain disruptions and their 

impacts [4] so far.  

In the literature, the promising concept of supply chain 

disruption has been originated as a branch of supply chain risk 

management. For instance, Tang divides supply chain risks 

into two categories: operational risk and disruption risk [5]. In 

addition, Chopra and Sodhi [6] classify supply chain risks into 

nine parts: 1) disruptions 2) delays 3) systems 4) forecasts 5) 

intellectual property 6) procurement 7) receivables 8) 

inventory and 9) capacity. Two common modes of disruptions 

are supply and demand disruptions. Therefore, to mitigate 

negative impacts of disruptions on market or on supply chain, 

enterprise could adopt proactive planning by following and 

implementing some approach such as scenario based decision 

making/scenario based planning/scenario based strategy 

formulation, etc. Despite the ever increasing importance 

[7]–[9] of supply chain disruptions management, there has 

been little application of quantitative modeling techniques to 

the topic thus far; in general, most of the papers simply 

provide qualitative insights into the problem [10]. We apply 

quantitative insights to disruptions management and model 

demand and disruptions uncertainty on a common platform. 

However, we implement supply disruptions in the same model 

by treating it in a different way.  

Most recently, many a number of researchers start to model 

supply disruptions or demand disruptions by adopting 

quantitative approach thus seeking more realistic way to 

mitigate, recover from and cope with disruptions successfully. 

Actually, recent high profile catastrophic events such as Japan 

tsunami 2011, the hurricane Katrina and Rita in 2005, the 

tsunami in 2004, terrorist attack 9/11, etc. have motivated 

researchers to include supply chain disruptions risk into 

procurement and supply chain[5], [6], [11]–[17]. Other types 

of catastrophic events that can interrupt business operations 

are snowstorms, heavy rain, excessive wind, fire, industrial 

and road accidents, strikes, and changes in government 

regulations [18], [19]. Thus, the possibility of supply 

disruptions should be considered during decision making. 

Some authors suggest dual and/or multiple sourcing as one of 

the efficient strategies to mitigate supply chain disruption risk 

[16], [20]–[32]. Though multiple sourcing strategy is more 

reliable, it adds additional cost for negotiation, making 

contract and monitoring the quality [33], et al.  

A very well-known and widely cited example that 

highlights supply disruption and effectiveness of dual 
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sourcing strategy is the case of Nokia-Ericsson in 2000. The 

Philip`s microchips plant was shut down due to a fire accident. 

It caused Ericsson loss for about $400 million, while Nokia 

managed to source from alternative suppliers thus minimized 

the disruption effect [34]. One recent large scale disaster that 

disrupted supply chain globally and forces the decision maker 

to think about supply chain disruptions is the Japan 

earthquake and tsunami in 2011. The earthquake and tsunami 

in japan affected the supply chain of different organizations 

both domestically and internationally. During the 1960s and 

1970s, Japan rose up as the world`s second largest 

manufacturer. It then became one of the major manufacturing 

hubs in the world. For instance, Japan provides 60% of the 

world silicon used for production of semiconductor chip. 

Besides, Japan is the world`s leading supplier of dynamic 

random access memory and flash memory. Flash memory is 

used in standard logic controllers (SLC), liquid crystal display 

(LCD), and LCD parts and materials. After the catastrophic 

disaster, the prices of the components soared by 20%, 

showing the global supply chain dependency on Japan [35]. 

These examples show the importance of having multiple 

suppliers to cope with supply disruptions.  

Despite the fact that demand disruptions happen 

infrequently, it carries significant impact on supply chain [5]. 

In 2008, many firms around the globe experience large scale 

demand disruptions due to the global financial crisis. For 

instance, nearly 1000 toy manufacturers are shut down in 

Southern China in 2008 because of the sudden order 

cancellation from U.S and Europe. Chen and Zhang [36] 

examine the effects of demand disruptions on production 

control and supplier selection problem. They consider a 

three-echelon supply chain system and model the customer 

demand as a jump-diffusion process. Besides, several 

researches are conducted in order to implement a 

coordination mechanism when a demand disruption occurs. 

For example, Dong and Ming [37] establishes coordination 

mechanisms for a one-supplier-one-retailer supply chain that 

experiences demand and price factor disruptions at the same 

time in the planning horizon. In addition, Xiao, Qi and Yu [38] 

investigate the coordination mechanism for a supply chain 

with one manufacturer and two competing retailers. They 

consider different deterministic demand disruptions scenario 

and build quantity discount policy. 

The above discussion makes an image on the research in 

the area of disruptions management in a state-of-the art 

environment. In view of this, the significance of disruptions 

planning can`t be overlooked in present supply chain and 

disruptions management domain. Thus, we apply stochastic 

programming approach and integrate demand and disruptions 

uncertainty that could naturally present in a supply chain. 

However, supply disruptions are also captured in this 

framework. In addition, the model includes quality aspects of 

products and delivery performance of suppliers. The model 

could be adopted by the decision maker for making decision 

in an uncertain environment arising due to disruptions. 

The rest of the paper is structured as follows. Section II 

discusses the importance of modeling and decision making 

under uncertainty. Section III addresses the problem 

statement. Section IV presents the analytical framework. 

Section V deals with related computational experiments. 

Finally, Section VI concludes the paper. 

 

II. MODELING AND DECISION MAKING UNDER UNCERTAINTY 

In a global economy, the key to success greatly depends 

largely on effectively incorporating uncertainty in supply 

chain planning and decision making process. Considering the 

drawbacks of deterministic models in business success and 

continuity management in the present supply chain domain; 

recently, researchers, academia and real world participants 

are encouraged to include uncertainty in supply chain 

coordination and planning in practice. One important 

consideration for the insertion of uncertainty in supply chain 

planning is the mode of representing stochastic or uncertain 

parameters. Two modes are described in the literature. These 

are scenario-based approach and distribution-based approach. 

In the former approach, a random parameter is presented by a 

set of discrete scenarios. These scenario sets describe all its 

possible future outcomes. Thus, scenario-based approach 

captures uncertainty by representing it in terms of number of 

discrete realizations of the stochastic terms hence constituting 

distinct scenarios. The major challenge and difficulty arise in 

this method is its computational complexity. To overcome the 

computational burden, continuous probability distributions 

for the random parameters are often used [39]. It reduces the 

problem size at the expense of imposing non-linearity into the 

problem. However, an effective algorithm for example 

Dantzig-Wolfe Decomposition algorithm [40] or Benders 

decomposition [41], also known as L-shaped method of Slyke 

and Wets [42], may be applied to effectively solve large scale 

scenario based stochastic programming. One of the most 

popular and widely used techniques for planning under 

uncertainty is two-stage stochastic programming [43]. In this 

approach, the decision variables are classified into two sets. 

The variables which are made prior to resolution of 

uncertainty are termed as first-stage variables or design 

variables (`here-and-now` decisions). Based on here-and-now 

decisions and the realization of the random events, the second 

stage or control variables are made to optimize in an uncertain 

environment. This is termed as `wait-and-see decision` and 

reflects the way a decision maker adapts/responses to the 

unfolding uncertainty. The uncertainty is expressed as a 

stochastic nature of the costs related to second stage variable. 

Therefore, the objective function consists of the sum of first 

stage cost and the expected value of the second stage cost. It is 

pointed here that we apply Benders Decomposition/L-shaped 

algorithm to solve the proposed model. In the next section, we 

describe the problem statement we want to explore.  

 

III. PROBLEM STATEMENT 

This paper studies a supply chain consisting of multiple 

agents-outside suppliers, local supplier and distributors. A set 

of products are outsourced from a local supplier as well as 

from a set of outside suppliers. These products are then 

distributed to the customers through a given supply chain via 

different distribution centers/depots/warehouses located at 
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different regions in a territory. The customer demands vary 

depending on the type of products and locations. However, 

from our experience we see that customers might experience 

different levels of product demand based on disruptions 

signals or after the occurrence of a disruptions in practice. For 

instance, customers want to buy more petroleum oil when they 

hear about Middle East instability. On the other hand, 

suppliers also experience disruptions and its devastating 

impacts in the stages of their production process/sourcing 

process. In order to effectively face disruptions and its 

associated effect in an uncertain environment, dual or 

multiple sourcing is an option which is more or less discussed 

in the supply chain risk management literature. The 

effectiveness and applicability of dual/multiple sourcing are 

discussed in the introduction section. In our work, the 

distributor has a fixed and reliable local supplier having 

limited capacity. It is assumed that the local supplier has no 

disruption effect. Therefore, the local supplier acts as a 

backup supplier to mitigate disruption effect, at the expense of 

additional cost though. The management selects two or more 

outside suppliers thus adopting multiple sourcing strategies 

from the set of available suppliers. Thus, a tradeoff exists 

among initial order allocation among the suppliers before 

disruptions and emergency order to local supplier and the 

related costs in respect of a disruptions scenario.  

It is worth mentioning that one of the most important 

considerations in any outsourcing decision is the quality of the 

incoming products as well as receiving the ordered products 

on time. Because, company reputation and brand image 

greatly depend on quality and delivery performance. Keeping 

in view these aspects, several authors [44]–[47] describe the 

importance of considering quality and delivery aspects, when 

it comes to outsourcing. 

In this paper, a two-stage stochastic programming 

approach is proposed for a multi-product multi-agent supply 

chain within a disruption planning framework that takes into 

account the purchasing cost, inventory holding costs and 

emergency ordering cost. Hence, this model reflects a tradeoff 

analysis among ordering quantities in a pre-disruption and 

post-disruption situation and the related costs. However, to 

include quality and delivery performance, we include 

constraints (4) and (5) as hard constraints in the proposed 

model. Note that right-hand-sides of the quality and delivery 

constraints can be modified to find alternative solutions. As 

response policies/strategies to cope with disruptions, the 

formulation tries to evaluate order quantities in normal and 

disrupted state at different distribution center under different 

disruptions scenario.  

In the stochastic programming model, the decision 

variables are separated into first stage (Here-and-now) and 

second stage (wait-and-see) decisions. The first stage 

decisions are initial order placed with the outside supplier and 

initial order to the local supplier whereas the second stage 

decisions are the emergency order quantities. After the initial 

order, first level of uncertainty is resolved when the 

disruptions scenario happens. Due to disruptions to the 

outside supplier, his capacity is reduced thus some fraction of 

the initial order could be supplied by the main supplier, while 

local supplier supplies whatever order placed by the decision 

maker. When the uncertainties related to disruptions and 

demands are revealed, the decision maker calls for emergency 

order at a higher cost.  

The proposed stochastic programming formulation 

minimizes the total expected cost that includes the first stage 

cost and the expected second stage cost or scenario cost. The 

first stage cost comprises of purchasing cost from local 

supplier. The second stage costs expresses the costs related to 

disruptions scenario. We include purchasing cost, inventory 

holding cost and emergency ordering cost to model the 

scenario cost. We consider single period model and assume 

average inventory cost. Since the scenarios follow discrete 

distribution, the expected second stage cost is equal to the 

product of the scenario probability, Ps and the associated costs 

summed over all the scenarios, S. 

 In sum, the objective of the proposed stochastic 

framework is to minimize total cost of a multi-agent 

multiproduct supply chain by considering decisions such as: 

(1) optimal ordering policies to the available set of suppliers 

(3) maximizing the quality of items received from the 

suppliers, and (4) minimizing the late deliveries from the 

outside suppliers.  

In the next section, the proposed mathematical model is 

presented. 

 

IV. MODEL FORMULATION 

In the first step, we identify the index sets, parameters and 

decision variables in order to make an attempt to develop a 

quantitative disruption management framework. The index 

sets are defined below. And, the decision variables are 

provided in Table I.  

  

Sets  Descriptions 

I Set of outside suppliers 

J Set of items 

L Set of distribution center 

S Set of disruptions scenarios 

 
TABLE I: DECISION VARIABLES IN THE MODEL 

Decision 

Variables 

Descriptions 

xijl  Amount of item j ordered from supplier i at distribution 

center l, LlandJjIi  ,  

Q
loc
jl

 Amount of item j ordered from local supplier at 

distribution center l, LlandJj   

 Q
eme
jls  

Emergency order placed for item j at distribution center l 

under disruption scenario s. SsandLlJj  ,  

I jls  Inventory level of product type j in distribution center l 

under scenario s, SsandLlJj  ,,  

The parameters used in the model are provided in Table II. 

In the next, the constraints of the proposed model are given in 

subsection 3.1., the analytical framework is presented in 

subsection 3.2. 

A. Constraints in the Proposed Model 

The model considers six types of constraints. They are 

inventory constraints related to distribution center, and 

emergency order constraints, quality and delivery 

performance constraints of the suppliers, and finally the 

supplier capacity constraint. These constraints are illustrated 

below: 
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TABLE II: THE PARAMETERS IN THE PROPOSED MATHEMATICAL MODEL 

Parameters Descriptions 

Ps  Probability of disruptions scenario s, Ss  

D jls  Demand of item j in distribution center l in disruption 

scenario s SsandLlJj  ,  

H jl  Unit inventory cost of product type j in distribution center 

l, LlJj  ,   

INV jls
max  Inventory limit at a distribution center for a product type 

in a scenario, SsandLlJj  ,  

cijl  Unit cost (in $/unit) of item j quoted by supplier i to 

distribution center l, LlandJjIi  ,  

C
loc
jl  Unit cost (in $/unit) of item j quoted by fixed local 

supplier to distribution center l in normal 

condition, LlandJj   

C
eme
jl  Emergency cost per unit (in $/unit) to be added to unit 

cost quoted by local supplier in normal condition, 

LlandJj    

Q
loc

jl
min

 
Minimum order to local supplier for a product type j at a 

distribution center, l in normal condition 

LlandJj   

Q
loc

jls
max

 
Maximum order to local supplier for a product type j at a 

distribution center l under scenario, s 

SsandLlJj  ,  

F isl  Percentage of order supplied by the outside supplier i in 

disruption scenario s to distribution center 

l, LlandSsIi  ,   

qij  Fraction of poor quality items of type j from supplier i, 

JjIi  ,  

q
loc
j  

Fraction of poor quality items of type j from local supplier, 

Jj  

t ij  Fraction of late items of type j from supplier i, 

JjIi  ,  

 j
 Pre-set quality tolerance factor for product type j, Jj      

 `d
 Pre-set delivery tolerance factor expressed as percentage 

of demand     

1) Inventory constraints 

The inventory of product i at distribution center l in a 

scenario, s is equal to the product received from local supplier 

plus incoming flows from outside supplier. It is worth 

mentioning that due to the impacts of disruptions on the 

outside supplier, they could not supply the whole 

amount, xijl as was previously ordered before disruptions 

took place. Hence, the effect of disruptions is taken by the 

factor, F isl which varies depending on the type and extent of 

disruptions. However, it also varies depending on the location 

of the distribution centers and distance of the same from the 

outside suppliers. Because, mode of transportation and the 

goods carried are also affected by disruptions.    

xFQI ijl
Ii

isl
loc
jljls ,



SsLlJj  ,,  

The inventories are limited by their corresponding upper 

bound. This upper bound is determined based on demand of a 

particular product in a particular location under a scenario, s 

while considering the distribution center capacities to store 

particular types of products.   

,max
INVI jlsjls   SsLlJj  ,,  

2) Emergency order constraints 

The enterprise asks for emergency order when there is 

shortage of inventory to meet the demand and is determined 

by the following equation after calculating inventory in a 

disruption scenario.  

IDQ jlsjls
eme
jls

    SsLlJj  ,,  

3) Quality and delivery performance constraints 

The following constraints fulfill the requirements for high 

quality and on-time delivery of the received items from the 

suppliers. Since, the requirements for high quality and 

on-time delivery of the received items are generally expressed 

as a percentage of demand in real world business practices; 

we can express the required quality performance as 


 Ss

jlsj
Ss

eme
jls

loc
j

loc
jl

loc
jijl

Ss
isl

Ii
ij DQqQqxFq ,

LlJj  ,  

Here,  j is the quality tolerance factor for specific product 

type received at the distribution center and expressed as 

percentage of demand.   

However, the delivery performance can be expressed 

as ,` 
 Ss

jlsdijl
Ss

isl
Ii

ij DxFt  LlJj  ,  Here,  `d  is the 

pre-set delivery tolerance factor expressed as a percentage of 

demand. 

4) Supplier capacity constraints 

We assume that outside supplier has infinite capacity. On 

the contrary, the ordered quantities to local supplier in normal 

( Q
loc
jl ) and emergency ( Q

eme
jls ) situation are restricted by the 

following constraints respectively.  

QQ
loc

jl
loc
jl

min
 , LlJj  ,  

QQ
loc

jls
eme
jls

max
 , SsLlJj  ,,  

B. Proposed Model 

Our model is based on some assumptions given below.  

1) Local supplier is not subject to disruptions whereas 

outside suppliers are prone to disruptions. Therefore, 

outside supplier can`t supply the exact amount as was 

previously ordered. 

2) The model assumes a single period.  

On the basis of the above mentioned assumptions and the 

constraints along with defined variables and parameter, the 

analytical framework is formulated as  

 

1

2

loc loc

jljl
j J l L

isl jl jlsijl ijl
i I j J l L j J l L

s emeeme locs

jl jl jls
j J l L

Min Z Q C

x cF H I
p

QC C

 

    

 



 
 

 
  

  
  



 




            (1) 

,

loc

jls isl ijljl
i I

Q xI F


 
    

, ,j J l L s S                               (2) 

,
,

loc loc

isl ijlij j jl
i I s S

loc eme

jlsjj jls
s S s S

j J l L

q q QxF

q Q D

 

 



    

 

 

                 (4) 
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,` 
 Ss

jlsdijl
Ss

isl
Ii

ij DxFt  LlJj  ,          (5) 

 

INVI jlsjls
max

, SsLlJj  ,,                  (6) 

 

QQ
loc

jls
eme
jls

max
,

  SsLlJj  ,,                  (7) 

 

QQ
loc

jl
loc
jl

min
,

   LlJj  ,                     (8) 

 

0,,, IQQx jls
eme
jls

loc
jlijl , SsLlJjIi  ,,,     (9) 

The objective function (1) minimizes the expected cost 

which is the summation of first stage cost and the second stage 

expected cost/scenario cost. Herein, Scenario-based 

disruption effect is considered by taking the probability of 

each scenario. Eq. (2) determines the inventory level of each 

product in a disruption scenario at each distribution center. Eq. 

(3) establishes the emergency order in response to disruption. 

Eq. (4)-(5) imposes quality and delivery performance 

requirements of outside supplier. Firm`s inventory limit for 

each item at each distribution center is enforced through Eq. 

(6). Eq. (7)-(8) limits the ordering quantity to local supplier. 

Finally, (9) is non-negativity constraints associated with 

decision variables considered.  

 

V. COMPUTATIONAL EXPERIENCE 

In this section, numerical experiments are designed and 

implemented to demonstrate the effectiveness and 

applicability of the proposed model in practice. Let us 

consider a simplified representation of a supply chain 

consisting of two outside suppliers, one local supplier and two 

distributors. Additionally, the distributors outsource two 

categories of product from the three suppliers. We design and 

execute 10 test instances in order to show the performance of 

the model. With a view to examining the effect of disruptions 

scenario on total cost, we consider several disruptions 

scenarios. We commence the experiment with 2 scenarios and 

continue up to 11 scenarios, with each having the same 

probability of occurrence. In the analysis, we consider normal 

probability distribution for product demand and order fraction 

realization. We generate discrete values and use those in the 

model. Other parameters such as costs and quality/delivery 

tolerance factors are assumed in this hypothetical case study. 

Table III summarizes the range of data of the test problems we 

solved. We don`t show all data values for reasons of clarity 

and comprehensibility, rather we show the range.  

 
TABLE III: RANGE OF DATA FOR THE TEST PROBLEMS 

Parameters  Range of data 

Product Demand  )500,1500(ND   

Fraction of order/ outside )1.0,80.0(NF   

Purchasing cost/outside ($) [7,9] 

Purchasing cost/local ($)  [10,13] 

Inventory cost ($)  [1,2] 

Emergency cost ($)  [12,14] 

Quality tolerance factor [0.02,0.04] 

Delivery tolerance factor [0.02,0.04] 

Ordering limit/local [600,50000] 

Inventory Limit [20,000]* 
*we assign same inventory limit for all the trials.  

However, our model can accommodate different inventory 

limits that a decision maker might be interested to fix for the 

particular product-depot-scenario combinations. 

We assume some fixed values for the tolerance factors in 

our analysis. We state here that the quality and tolerance 

factor can be changed depending on the disruption scenario or 

organizational context and the model will thus produce 

different results. We consider different number of scenarios 

for the test instances as shown in Table IV. For the sake of 

simplicity of analysis we assume same probability of 

occurrence of each of the scenarios considered in every test 

case. To make the model more realistic, data related to 

disruption probabilities, the Product demand and the fraction 

of order supplied by the outside suppliers for any products 

type could be achieved from the historical information of 

demand/supplier disruptions database of an enterprise. From 

those benchmark values, we could generate random values by 

assuming normal distribution for instance. In fact, many real 

world events could be described by normal distribution as it 

offers the characteristics of holding natural variation that 

really persist in a natural environment. As such, normality 

assumption is widely invoked in the literature [48].  

The model presented above is implemented under GAMS 

modeling language and solved by DECIS solver. The DECIS 

solver works on the basis of probability information supplied 

in the GAMS input file. DECIS solver can’t deal with 

continuous distribution. It only works when it gets discrete 

data with associated probability. Hence, probability 

assignment is required to the data values. Here, at first we 

assume demand and percentage of order realized as normally 

distributed random variable having properties of 

)500,1500(ND  and )1.0,80.0(NF  respectively. And, 

from the large samples (100,000) generated for each of the 

parameter, we put demand and order fraction realization 

values by scenarios in the proposed model. To create the 

stochastic file for representing demand uncertainty, we then 

need to assign probability to each of the demand values taken 

as stochastic input. For simplicity, we assign equal probability 

for each of the demand value taken as input to the GAMS file. 

When we employ Monte Carlo sampling on DECIS, it 

samples out all possible universe scenarios, sampled from the 

original probability distribution. This corresponding sample 

is then taken and solved using decomposition technique. 

The mathematical model presented in this paper is coded 

on GAMS 24.1.3 and run by CPLEX 12.5.1.0 solver and 

DECIS solver respectively on an Intel (R) Core (TM) i7-3770 

Dual Processor with 24GB RAM and a 3.40GHz CPU. The 

definition of the uncertain parameters, the input format and 

the output are obtained by DECIS solver. DECIS solver 

applies Benders decomposition/L-shaped method for solving 

large scale stochastic programming. The L-shaped method 

offers the advantage of special decomposable structure of the 

two stage stochastic programming model and is a widely 

applicable and popular method for solving stochastic 

programming [42], [43]. Benders decomposition/L-shaped 

method divides the original problems into a master problem 

and a sub-problem based on first and second stage variables 

and equations. Thus, this method offers an effective and 

efficient technique for solving large scale stochastic 
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programming.  

In sum, in the first step, we treat the model as a 

deterministic one by assigning discrete values of demand data 

in the model. In the next step, we model demand uncertainty 

by taking probability distribution of this random parameter. In 

brief, in the deterministic model, demand is regarded as 

deterministic values; on the other hand, randomness to 

demand parameter is used in the stochastic model we develop. 

The optimum objective function values for the stochastic 

model and deterministic model for the test instances are 

reported in Table IV. The change of cost for switching from 

deterministic to stochastic model is also presented in the 

following Table.  

 
TABLE IV: COMPARISON OF TOTAL COST FOR STOCHATSIC AND 

DETERMINISTIC MODEL 

# of  
scenarios 

Total cost ($) Cost change 
(%) Stochastic model Deterministic 

model 
2 65,267.8052 77,235.931 -15.50 
3 83,649.277 85,169.379 -1.78 
4 97,932.109 91,317.775 7.24 
5 1,10,504.805 89,803.983 23.05 
6 1,09,922.331 1,08,693.896 1.13 
7 1,23,424.419 1,10,756.761 11.43 
8 1,42,434.485 1,25,478.519 13.51 
9 1,49,868.598 1,32,021.256 13.51 

10 1,60,293.159 1,38,775.712 15.51 
11 1,66,561.810 1,41,297.236 17.88 

 

The comparison of total cost variation for different test 

instances is given in Fig. 1. Fig. 1 depicts the effect of 

considering demand uncertainty in the proposed model.  

 

 
Fig. 1. Total cost variation for deterministic and stochastic model. 

 

The results indicate that when the number of disruptions 

scenario increases, total cost for both model increases. 

However, we notice that the stochastic model demands higher 

cost than the deterministic model except for the first and 

second test case which contain two and three disruptions 

scenarios respectively. The reasons behind an increase of cost 

in stochastic model might be explained by the fact that when 

the number of disruption increases, the variation of demand 

increases and so it is hard for only the first decision to support 

all possible cases of such variable demand. So, it might 

require emergency order placement after a disruption happens 

and the uncertainty related to product demand reveals. Or, if 

the demand scenario is such that emergency order is not 

required; it calls for more order in the first stage thus 

increasing cost. In addition, it is observed that the change of 

total cost seems to become prominent when we consider more 

scenarios. More importantly, uncertainty does exist in a 

system in practice. Therefore, supply chain disruptions 

planning without considering uncertainty might lead to 

inaccurate and improper management decision grounded on a 

disruptions management strategies and activities. Thus, to 

make better decision in an uncertain environment, the 

stochastic model might outperform the deterministic model.  

 

VI. CONCLUSION 

In this paper, a two stage stochastic programming approach 

is presented to formulate a quantitative supply chain 

disruptions planning framework. We consider demand and 

disruptions uncertainty and consider several disruptions 

scenarios to model a multi-product, multi-agent supply chain 

under disruptions risk. The model offers some important 

dimensions such as maximizing quality of incoming products 

and minimizing late deliveries apart from disruptions dealing 

cost. There might be several research issues that could be 

incorporated as an extension of the presented formulation. 

One could think of formulating and extending the model 

considering the budgets allocated to disruptions management 

in a financial year of an enterprise. Because, it is obvious that 

it involves cost for disruptions scenario planning and 

management. Therefore, considering financial restrictions 

uphold significant insights to any organization. The model 

might incorporate other cost parameters such as penalty cost 

and reward for violating or meeting quality/delivery 

performance, etc.  However, one might think of exploring the 

model in a multi-period system.  
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