
 

Abstract—A switching controller for vertical take off and 

landing (VTOL) vehicle is presented. Since the entire system 

belongs to a class of underactuated systems, it is decomposed in 

to three fully-actuated subsystems. Then, a set of constraints on 

the rotor speeds are given to cancel out some nonlinearities in 

input, hence ensure to obtain an affine in control dynamics that 

enables us to derive local feedback linearizing controllers and 

together with some associated Lyapunov functions. Finally, a 

controller scheduler based on Lyapunov functions is invoked to 

select the subsystem to be controlled and achieve the desired 

tracking motion. An illustration is given to show the 

effectiveness of the controller. 

 
Index Terms—Quadrotor, lyapunov function, underactuated 

systems ,VTOL.  

 

I. INTRODUCTION 

We face underactuated systems in a wide range of 

industrial applications varying from aerospace to robotics, 

flexible to mobile platforms. They may be formed due to 

some number of reasons such as the lack of sufficient 

actuators that may exist because of some cost constraints, 

some physical difficulties or limitations, in some cases 

unexpected actuator failures. However, when a system is 

intentionally built to operate as an underactuated system, we 

assume that it is controllable in the region of intended 

operations. In other words, there exists a feasible operation in 

the configuration space that is achievable using the selected 

actuation mechanism. For instance, using four rotors, it is 

possible to fly a quadrotor for surveillance purposes. 

VTOL motion may certainly be obtained by using 

four-rotor helicopters, quadrotors, which are studied 

extensively in literature for many applications due to their 

low-cost, maintainability, and maneuverability features. 

Quadrotors, having only four rotors, do not have enough 

control richness in their structure to provide unrestricted 

flight in full vector space. Hence, the quadrotors are not fully 

linearizable. In this paper, we will consider tracking problem 

of a desired linear motion in the Cartesian space together with 

the heading angle. 

There exist several approaches to obtain a suitable 

controller for this class underactuated systems. First solutions 

have been shown on linearized dynamical models around 

some predefined flight conditions. Classical PID algorithms 

have been demonstrated successfully due to their simplicity 

and proven reliability in practice. Multi-loop PID 

architectures derived for a particular flight profile over a 
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trimmed model have been shown to perform well. For 

instance, a PID controller is derived and compared to LQR 

and backstepping techniques in [1]. In [2] a gain scheduled 

PID technique is applied to quadrotor with some fault 

conditions. There is an example of a sliding mode controller 

for altitude control is shown [3]. Effectiveness of 

backstepping under disturbance for attitude control is shown 

in [4]. An H  control application is shown in [5], dynamic 

inversion based control scheme is given in [6]. In [7], an 

adaptive sliding mode and a feedback linearization methods 

are compared for the quadrotor platform. A nonlinear 

controller for a simplified model of quadrotor using a control 

Lyapunov function (clf) [8] has been shown in [9]. 

Our focus is to develop a novel structure to enable us to 

control the linear motion and the heading angle of quadrotor. 

 

II. BACKGROUND 

A. Underactuated Dynamical Systems 

Rigid body dynamics may be derived using Euler-Lagrange 

method will have the following general equations of motion. 

  =)()(),()( dm qFqGqqqVqqM  
 

(1) 

with q  configuration space, M , 
mV  some matrices )(qG  and 

)(qF   some vectors. Bounded unknown disturbances and the 

control input torque are denoted by d  and   respectively. 

Underactuated systems are defined when the system DOF is 

larger than the number of actuators. For such systems, one can 

partition the configuration space n

ua xxx R][=  and rewrite 

the (1) as  
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with aax   actuated and uux   unactuated vector 

spaces, a
n

u R , ii gf ,  for uai ,=  smooth vector fields 

in appropriate dimensions. 

B. Partial Feedback Linearization 

Reference [10] has shown the existence of a collocated 

controller  

   )()(= 1 xfggu aa

T

a  (3) 

with   auxiliary control input that partially feedback 

linearizes underactuated system in (2) as 

 =ax
 

(4) 
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  )()(= xxx uuu   (5) 

with u
n

uu R ,  uncontrolled internal dynamics 

nonlinearities. When a mechanism is intentionally built as an 

underactuated system, it is understood that there exists a 

sufficient controller within the region of operation. 

To extend the similar discussion in to the uncollocated 

space let us repartition ux  into na-DOF subsystems. For an 

n-DOF system, let 
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If all )(xgg T

ii  are full rank matrices almost everywhere 

for Ni 1,2,=  then there exists N  controllers  
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that partially feedback linearizes (6) in to N  subsystems as  
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 with a
n

iix R  sub-vectors. For such systems, the i  

can only be designed to control the actuated 
thi  subsystem 

with an -DOF. Without losing generality we can assume n  is 

a multiple of an . 

Assumption 1: Any one of the N subsystem is controllable 

when the entire system is stable within the region of operation. 

Although it may seem to be strong assumption, it is expected 

for the systems where the actuation mechanism is designed to 

be less than full DOF. This is also applicable for VTOLs. 

C. Switching Lyapunov Functions 

 Let us try to formulate a dynamic representation of class of 

nonlinear systems under N-switching inputs as follows 
  

 );(=));(,(=)( txtxuxftx ii 
 (9) 

with 
nx R , ii tuxf =);,(  Lipschitz continuous 

vector fields,  Ni ,1,; . Without loosing generality 

0=(0)i  for all i . 

Let us, now, define a piecewise constant switching 

signal )[0,:)(t . Assume that there is a finite 

number of switching instances in any finite interval defined by 

a sequence },,{= 10 ttTS . 

Let us define Lyapunov-like function first.  

Definition 1: A system has Lyapunov-like function V  in 

x  if   

    1)  There exists 0>> 12   such that  
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    2)  Its derivative is negative definite within the piece-wise 

continues time intervals ),[ 1kk tt   

 0=(0)0}={\0<)( VandxxxV x
 

  

 3)  It forms a decreasing sequence at the switching 

instances of ST   

 kkkkkk ttforttxVttxV >));((<));(( 111   
 

  

Theorem 1 ([11]):  Given the N-switched system (9), 

suppose each vector field i  has an associated 

Lyapunov-like function iV  in the region i  with 

equilibrium point 0=x , let )(t  be a switching sequence 

such that )(t  can take on the value i  only if itx )( , 

and in addition  

 ))(())(( 1,,  kiikii txVtxV
 

(10) 

where kit ,  denotes the k th time that i  is switched in. Then 

(9) is Lyapunov stable.  

 

III. PROBLEM DEFINITION 

 A quadrotor as a VTOL device having with four rotors is 

shown in Fig. 1. Controlling the entire 6-DOF in VTOL with 

only four actuators is not possible.   

 
Fig. 1. Quadrotor frame. 

 

Controlling the entire 6-DOF in VTOL with only four 

actuators is not possible. This structure is built in merely for 

the purpose of navigation in 3D Cartesian space with vertical 

takeoff and landing characteristics. Therefore, we consider 

that it is a functional underactuated system within the scope of 

this intended region of operation. 

A. VTOL Dynamics 

 Relevant coordinate frames are shown in Fig. 1 as the 

earth-frame, E , is a fixed reference frame and the body 

frame, B , attached to the vehicle. An Euler-Lagrange based 

model is given in [6] as  
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 with inputs, lift force  
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and generalized torques  
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The thrusts generated by rotor driven propellers may be 

shown as  

 
2= ii kf    

where k  is the lift constant, i  angular speed and the 

mismatch speed term  

  .= 3142  
 

 

B. Input Constraints 

The system dynamics (11)-(13) are not in the affine form. 

To transform the nonlinear control input terms, we constrain 

the angular velocities that generate lift force and generalized 

torques according to (14).  

 
1w  

2w  3w  
4w  

pitch 0  0  
0  0  

roll 0  
0  0  

0  

yaw 0  0  0  0  
 

 (14) 

Note that at the expense of reducing the effective control 

inputs to the already underactuated system we gain a set of 

equations of motion in the affine form. Let us define three 

subsystems to control 2-DOF motion using the nominal speed 

  and the speed variation   needed to achieve the desired 

motion. Hence, the system model can be written in the form of 

(6) where  
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4Ri
 for yrpi ,,=  defining pitch, roll and yaw 

subsystems respectively. 

Required forces needed for the lateral motion can be 

obtained by small rotations around   and   angles. 

Therefore, to operate the VTOL it is sufficient to keep the 

angles bounded by  
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C. Error System Dynamics in Fully-Actuated Subspaces 

Let there be a piecewise continuous desired motion defined 

by the vector 
T

ddddd zyxq ][=  . Due to the 

underactuation constraints we relax the roll and pitch motion 

for the tracking problem. Let us study the tracking error in 

each subsystem.  

1) Pitch subsystem 

Let the position tracking error in pitch subspace be defined 

as 
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Note that d  is a virtual desired signal utilized to provide 

the motion in x -dimension. Now, define a filtered tracking 

error as  

 pppp ees =
 

(17) 

with 0>},{= xp diag . Its dynamics can be 

expressed by taking derivative and using (11) and (14) as 
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with 
T

p u ][=  . 

2) Roll subsystem 

 The position tracking error in roll subspace may be defined 

as  
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(19) 

Now, define filtered tracking errors  

 rrrr ees =
 

(20) 

with 0>},{= yr diag . The filtered error dynamics 

can be expressed by taking derivative of (20) using (12) and 

(14)  
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with 
T

r u ][=  .  

3) Yaw subspace 

 Yaw subsystem is where the altitude and vertical takeoff 

and landing takes place. Therefore the desired position error 

vector is  

 




















 d

dz

yaw

zz

e

e
e ==

 

(22) 

Now, define the filtered tracking error vector  

 yawyyawy ees =
 

(23) 

with 0>},{= zy diag . The filtered error dynamics 

can be expressed by taking derivative of (22), using (13) and 

the constraints of inputs as in (14) 
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 with 
T

y u ][=  .  

 

IV. CONTROLLER DEVELOPMENT 

 We will give subsystem controllers by the following Lemmas 

in the flight regimen. Then, define a control scheduler to 

select the desired fully-actuated subspace using Lyapunov 

functions. 

A. Fully-Actuated Controllers 

 Desired flight regimen is achieved in one of the three 

subsystem operations, pitch, roll or yaw. For each subsystem, 

let’s define three controllers in the structure of (7) by the 

following lemmas. 

 Theorem 2 (Pitch): Let controller for the pitch domain 

actuation be defined by the speeds  
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with 0>
y

vk  and with 0>
v

k . Then, the tracking error 

pe  goes to zero exponentially in 0}={\ p .  

Proof: Take a Lyapunov function  

 0>
2

1
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T
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(28) 

with  Txp sss =  and 0>= T

pp PP . The error system 

dynamic given in (18) with the control (27) yields  
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with  
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Thus, the time derivative of (28)  

 0<== 2PP ppp
p

vppp ssKPsV 
 

(31) 

Therefore ps  goes to zero exponentially. Using the 

standard Lyapunov theorem one can conclude that e  goes to 

zero and using the Barbalat’s extension so does e . Hence the 

tracking is achieved in 0}={\ p .   

Theorem 3 (Roll): Let the roll subspace dynamics be 

controlled by the speeds of  
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with 0>,
vy

v kk . Then, 2e  goes to zero exponentially in 

0}={\ r .  

Proof: Take a Lyapunov function  

 rr

T

rr sPsV
2

1
=

 

(35) 

with 
T

yr sss ][=   and 0>= T

rr PP . Substituting the 

proposed controller (34) in to (21) results in 
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with 
r

vK  positive diagonal matrix as in (30). Thus, the time 

derivative of (35)  
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Similar to pitch subspace, the exponentially convergence to 

zero tracking error is achieved in 0}={\ r .   

Theorem 4 (Yaw): Finally, controller for the yaw 

subspace is constructed by  
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 with 0>,
vz

v kk . Then, Tzz ][    goes to T

dddd zz ][    

exponentially in y .  

      Proof: Take a Lyapunov function  
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(41) 

with  

 
T
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(42) 

Substituting the proposed controller (40) in (24) and 

having the time derivative of (42) result in  

 y
y

vy sKs =
 

(43) 

Thus, the time derivative of (41)  

 
2= = < 0y y y v y y y

y
V s P K s Ps P   (44) 

Once again, having ys  go to zero exponentially that 

implies that the tracking objective is achieved everywhere in 

y .   

B. Main Result 

So far, we have derived three fully-actuated controllers for 

2-DOF subsystems in three flight conditions. We, now, show 

a scheduler to select the proper controller for the subsystem 

needing to be controlled.  

Theorem 5: Let the pair ),( ii V  with yrpi ,,=  define 

the fully-actuated subsystem controllers and the 

corresponding clf. Then, the control scheduler using 

   yrpii VVVVuu ,,max=:=  (45) 

guarantees the tracking of the desired quadrotor motion in the 

sense of Lyapunov.  

Let us consider  

 },,{max= yrp VVVV  
(46) 

This is a bounded function, since  

 xaVxa i
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with yrpi ,,= , then  
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with  
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Fig. 2. Proposed control framework. 

   

It is a piecewise decreasing function in the intervals defined 

by )(t . We have from Lemma 1-3 that at each interval, the 

selected control iu  ensures the exponential decay of iV . 

Due to the continuity of iV  for yrpi ,,= , the function 

satisfies )()
1

( <
i

t
i

t VV 


 since iV ’s cannot jump at the time 

of switching instants. 

Therefore, V  is a Lyapunov-like function. Invoking the 

Theorem 1 we conclude that the systemm is Lyapunov stable. 

This concludes the proof.  

 

V. ILLUSTRATIVE EXAMPLE 

To demonstrate the proposed controller we pick a small 

quadrotor with mass of kgm 1= , arm length ml 0.24= , 

moments of inertia about body frame 

axis 23108.1== kgmII yyxx

 , 231014.2= kgmI zz

 , motor 

inertia 2810104= kgmJ  , thrust factor 261054.2= Nsk  , 

drag factor 26101.1= Nmsd  .   The limits on the motor 

actuators are set to be srad/500 . 
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TABLE I: THE DESIRED TRAJECTORY 
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Fig. 3. Desired and actual paths. 

 
Fig. 4. Desired and actual positions. 

 
Fig. 5. Actual and desired angles. 

 

The desired trajectory is defined by vertical takeoff, hover, 

circle and then vertical land by the trajectory as Control 

parameters and constructed by the sliding surface 

constants 30=i , control gain matrices IK
i

v 30= , 

Lyapunov function matrices IPi 30= . Simulation results 

show the actual and desired 3D paths in Fig. 3. More detailed 

navigational errors are shown in Fig. 4 and Fig. 5. 
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