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Abstract—In this paper, a lattice BGK model for thermal 

flows is used to simulate laminar natural convection in an 

infinite horizontal channel, partially heated by Lattice 

Boltzmann method. We applied the model based on the 

double-distribution function approach in two dimensional. 

Velocity and temperature distributions as well as Nusselt 

number were obtained and analyzed for the Rayleigh number 

ranging from 2.103 to 5.104 with the Prandtl number equal 0.71. 

 
Index Terms—Double distribution function LBGK, 

horizontal channel, natural convection, thermal lattice 

Boltzmann method.  
 

I. INTRODUCTION 

Natural convection represents an extremely interesting 

subject due to the coupling between fluid flow and energy 

transport. This area of research is attractive because of its 

potential in practical engineering applications such as thermal 

design of buildings, furnace design, electronic equipment and 

others. Previously, many investigators have studied 

convection in various geometries. The development of 

theoretical models, numerical algorithms and experimental 

approaches constitutes a solid base for advancement of 

knowledge in this field. 

The lattice Bhatnagar–Gross–Krook (LBGK) method, a 

novel kinetic-based numerical approach for simulating fluid 

flows and associated transport phenomena, has developed 

rapidly since its emergence. Many studies have made great 

strides in constructing its theoretical foundation [1]-[4] and 

improving its numerical performance [5]–[9] over the last 

decade. Unlike conventional numerical schemes, which 

discretize the macroscopic governing equations directly, the 

LBGK method solves the kinetic equation at the mesoscopic 

scale, i.e. the Boltzmann equation with the BGK assumption 

[1], [2]. Historically, the LBGK method originated from the 

lattice-gas cellular automata method (LGCA) [8]-[10], a 

microscopic model for fluid systems where the imaged fluid 

particles collide and move on a regular lattice, and indeed it is 

very similar to the LGA method, except that particles residing 

on the lattice are replaced by the corresponding distribution 
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functions and the collision operator is approximated by the 

BGK assumption. But later it was realized that LBGK could 

also be viewed as a special finite difference scheme of the 

continuous Boltzmann equation on a regular lattice [1], [2], 

which also defines the associated discrete particle velocities. 

From this viewpoint, discretization for the particle velocity 

can be decoupled from the spatial discretization, since the 

particle velocity in the Boltzmann equation is independent of 

the particle position [5]. This implies that we can discretize 

the continuous velocity space into a set of discrete velocities 

with sufficient symmetry (physical symmetry). 

Currently, a few thermal lattice Boltzmann models have 

been proposed. The earliest model which is known as multi 

speed model [11], uses the same distribution function in 

defining the macroscopic temperature. However, this model is 

reported to suffer numerical instability [12] and has a demerit 

that it can simulate thermal fluid flows only at fixed Prandtl 

number [13]. As an alternative approach, Shan proposed the 

so-called passive-scalar model [14]. This model suggests that 

the flow fields (velocity and density) and the temperature are 

represented by two different distribution functions. The 

macroscopic temperature is assumed to satisfy the same 

evolution equation as a passive scale, which is advected by the 

flow velocity but does not affect the flow field. 

The work of Luo and He [15] demonstrated that the 

isothermal lattice Boltzmann equation can be directly 

obtained by properly discretizing the continuous Boltzmann 

equation in both time and space phases. Following the same 

procedure, He [16] proposed the double-distribution function 

model, where the thermal lattice Boltzmann evolution 

equation can be derived by discretizing the continuous 

Boltzmann equation for the internal energy distribution. It has 

been shown that this model is simple and applicable to 

problems with different Prandtl numbers [17]. More 

importantly, this model requires low order moment and thus 

provides higher numerical stability than the passive-scalar 

model. 

In this paper, we use two dimensional simulation for 

natural convection heat transfer  in an infinite horizontal 

channel partially heated developed new five velocity lattice 

models of the internal energy density distribution function for 

incompressible flow. 

 

II. DESCRIPTION OF PHYSICAL PROBLEM  

The studied configuration, sketched in Fig. 1, is an infinite 

channel discretely heated from below where adiabatic 

partitions are regularly placed at the center of the adiabatic 
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surfaces.  The lower wall is partially heated and maintained at 

constant temperature at T2=1. The remaining portions of the 

lower boundary are adiabatic. The upper wall of the channel, 

placed at a height H from the lower one, is also maintained at 

constant but cold temperature at T1=0. 

The periodic nature of the system and the associated 

boundary conditions permits the subdivision of the channel 

into finite simple domains (SD) of length L. The study can be 

conducted in a SD, limited by the fictive boundaries P1 and 

P2 (Fig. 1). Such technique of subdivision was used in the 

past by [18] and [19] to study the natural convection in a 

channel provided, respectively, with adiabatic and heated 

portions on its lower wall. In references [19] and [20] have 

shown that although the SD is a representative entity of the 

studied configuration, its use allows obtaining only solutions 

verifying the periodic conditions imposed by P1 and P2. They 

have, thus, established the limitations of the SD by 

considering a calculation domain twice as long and called a 

double domain (DD) of length 2L. Consequently, in the 

present study, the simulations were performed in a DD, 

limited by the space between the fictive boundaries P1 and 

P3. 

 

III. NUMERICAL METHOD 

A. Double Population Thermal Lattice Boltzmann Method 

The physical space is divided into a regular lattice and the 

velocity space is discretized into a finite set of velocities {c}, 

the Boltzmann equation with Bhatnagar-Gross-Krook (BGK) 

approximation [21] can be discretized as [17], [22]: 

( Δ Δ ) ( )
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where, t and ct are time and space increments, 

respectively. f is the single-particle velocity distribution 

function along the th
 direction. f

eq
 is the equilibrium 

distribution function,   is the single relaxation time and Fis 

the external force. 

There are different types of lattice for LBM.  For simplicity 

and without loss of generality, we consider the 

two-dimensional square lattice with nine velocities, the D2Q9 

model: 
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The equilibrium distribution function for D2Q9 model is 

given by:  
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where w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and w5 = w6 = w7 =w8 

=1/36. The macroscopic density  and velocity u are related 

to the distribution function by: 

   
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                               (5) 

Using the Chapman-Enskog expansion, the equation (1) 

can recover the Navier-Stokes equation to the second order of 

accuracy, with the kinematic viscosity given by: 

2( 0.5) Δ
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vτ c t
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                                 (6) 

The LBGK evolution equation for the temperature is [17]: 
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For the evolution of g, given its simplified equilibrium 

distribution function, a D2Q5 lattice is preferred [21]. In the 

D2Q5 topology, the velocities v are: 
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Fig. 1. Geometry of physical problem. 

 

The associated weights w
T
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T
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4 = 1/6. The equilibrium distribution function for D2Q5 

model is given by: 
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At each lattice node, the macroscopic temperature is defined 

as: 

   
5

1=α

αg= T                                   (10) 

And the thermal diffusivity (in lattice units) is related to the 

relaxation time is : 

3

0.5 2Δt)c(τ
=κ T 

                           (11) 

B. Heat Transfer 

The thermal conditions applied on the two parallel 

stationary walls, the hot (bottom) and the cold (top) 

introduces a temperature gradient in a fluid, and the 

consequent density difference what induces a fluid motion 

that is, convection. In the simulation, the Boussinesq 

approximation is applied to the buoyancy force term [14], 

[16], [17], [22]: 
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 0 0gρG = ρβ T T j                        (12) 

where  is the thermal expansion coefficient, g0 is the 

acceleration due to gravity, T0 is the average temperature and 

j is the vertical direction opposite to that of gravity. So the 

external force in Eq. (1) is 

  eq
f fuc=F 3G                          (13) 

The dynamical similarity depends on two dimensionless 

parameters: the Prandtl number, Pr and the Rayleigh number, 

Ra defined as, 

Pr=
ν

κ
    and      

νκ

βΔTHg
=Ra

3
0                (14)                               

where T is the wall temperature difference, H is the distance 

between the walls.   

The Nusselt number, Nu is one of the most important 

dimensionless numbers in describing the convective transport. 

The Nusselt number for the hot wall is defined as the ratio 

between the heat transports by convection to the heat 

transmission due to conduction: 

κΔT

H>Tu
+=Nu

y<
1                          (15) 

Here <uy T> denotes the average over the convection layer. 

 

IV. RESULTS AND DISCUSSIONS 

This kind of the study is a classical benchmark on the 

thermal models defined by The Rayleigh-Benard convection 

flow. The fluid is enclosed between two parallel stationary 

walls, the hot (bottom) and the cold (top), and experiences the 

gravity force. Density variations caused by the temperature 

variations drive the flow, while the viscosity will counteract to 

equilibrate it.  

In all our simulations, the study is stationary, the Prandtl 

number Pr=0,71 and Rayleigh number is varied between 

2.10
3
 and 5.10

4
. For the boundary conditions at the top and the 

bottom walls, we applied the bounce back condition is applied 

for the fluid distribution. Different numbers of nodes were 

tested and the results were similar. The results presented here 

are Nx×Ny = 121×61 for the periodic side boundary 

conditions.  

A. Validation Model 

The configuration used for validation of the model is a 

horizontal chanel totally heated in bottom wall. The  geometry 

configuration is similar  in Fig. 1 except that b/L ratio equal 1 

(i.e. 100% heated).  After simulation for different Rayleigh 

numbers, Extrapolating the obtained values of Nusselt 

number, an estimate of the final converged solution can be 

done (Nu). In Fig. 2, the isotherms of Ra = 5.10
3
 and Ra = 10

4
 

are plotted for the case of 121 grid nodes in the y-direction. In 

Fig. 3, the contours of the stream function of the 

incompressible flow field for Ra = 5.10
3
 and Ra = 10

4
 are 

plotted.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Fig. 2. Contour plot with  iso-temperature lines for Ra = 5.103 (top) and 

Ra = 104 (bottom). 

 
 
 

 

 

 

 

 

 

 

       Fig. 3. Contour plot with  the stream function for Ra = 5.103 (top) and 

Ra = 104 (bottom). 

 

What showed the appearance of two Benard rollers against 

rotative with height and width equal H (height of the channel). 

The extrapolated converged values of Nusselt number at 

various Rayleigh numbers are plotted in Fig. 4, and compared 

with a empirical power law [23] and the standard reference 

data [24]. The critical Rayleigh number is defined by 

Rac=1707.8. The present results obtained by TLBM model is 

found to be in good agreement with [23] and [24]. 
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Fig. 4.  Nusselt number vs. Rayleigh number for b/L=1. 

Square: The current LB model; Triangles: Reference data of Ref. [24]; 

Line: Empirical power law Nu = 1.56(Ra/Rac)0.296 [23]. 

B. Simulation  

In this study, was used to predict the natural convection in a 

channel partially heated by studying the variation of the  

Rayleigh number. The geometry configuration is shown in Fig. 

1. The portion heated in bottom wall is varied  b/L ratio 
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isvaried between 0,2 and 0,8  (i.e. 20%, 40%, 60%, 80% 

heated). The boundary conditions is similar at applied in 

validation case,  except that between the heated portions we 

consider the adiabatic wall boundary in second order. 

The heat transfer is described by the Nusselt number Nu, 

defined in (15), as the ratio between convective heat transport 

to the heat transport due to temperature conduction. For the 

computation of the Rayleigh number, the Nusselt number 

results is shown in Fig. 4. 

 
 

          Fig. 5. Contour plot with iso-temperature line for Ra = 104. 

                       The top to bottom b/L=0,8; 0,6; 0,4 and 0,2. 
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Fig. 7. Nusselt number vs. Rayleigh number for  

b/L=1; 0.8; 0.60; 0.40; 0.20 

 

The results obtained showed clearly that the phenomenon of 

transfer decrease according to the geometry heated. The 

isothermes and streamlines for the fluid flow is illustred in Fig. 

2 and Fig. 3 what showed the appearance of four Benard rollers 

against rotative with height H (height of the channel) and width 

L/2 for all configurations. 

 

 

Fig. 6. Contour plot with streamlines for Ra=104.  
The top to bottom b/L=0,8; 0,6; 0,4 and 0,2. 

 

V. CONCLUSION 

We have presented a lattice Boltzmann thermal model for 

convection heat transfer in an infinite horizontal channel 

partially heated in bottom wall. In this model, the temperature 

field is modeled by a new lattice Boltzmann equation, while 

the velocity field is simulated by the lattice Boltzmann 

isothermal model for flows. The present model has all the 

advantages, including good numerical stability and the ability 

to handle convection heat transfer problems. The numerical 

results of the used problem for validation in a channel totally 

heated by bottom wall, have demonstrated the accuracy and 

reliability of the used LBM, and the good agreement between 

the results obtained and the results in the literature. 

This numerical model was used to predict and to study the 

natural convection in a channel partially heated by studying 

the variation of the Rayleigh number and the heated 

geometrical portion.  
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