
  

 

Abstract—The Lattice Boltzmann Method (LBM) is applied 

to incompressible, steady, laminar flow high Reynolds numbers 

varying in a range from 200 to 2000 for determining stability 

limits of the LBM Single Relaxation Time (LBM-SRT) and the 

LBM Multiple Relaxation Time (LBM-MRT). The lid driven 

cavity flow is analyzed. The effect of the model Mach number on 

accuracy is investigated by performing computations at 

different Mach numbers in the range 0.09 – 0.54 and comparing 

the results with the finite-volume predictions of the 

incompressible Navier-Stokes equations. It is observed that the 

Mach number does not affect the results too much within this 

range, and the results agree well with the finite volume solution 

of the incompressible Navier-Stokes equation. LBM-MRT is 

more stable than LBM-SRT especially for low Mach and high 

Reynolds numbers. For the LBM-SRT solutions, collision 

frequency ( ) decreases with increasing Reynolds and Mach 

numbers, however, for the LBM-MRT solutions, 7th and 8th 

relaxation rates ( 7 8s s ) decrease with decreasing Reynolds 

numbers and with increasing Mach numbers. Within its 

stability range, the convergence speed of the LBM-SRT is 

higher (approximately %10) than that of LBM-MRT, while the 

convergence speed of the finite volume method is much lower 

than the both LBM formulations (the LBM-SRT and the 

LBM-MRT). 

 

Index Terms—Lid driven cavity flow, lattice Boltzmann 

method, single relaxation time, multiple relaxation time. 

 

 

I. INTRODUCTION 

The Lattice Boltzmann equation (LBE) using relaxation 

technique was introduced by Higuera and Jimenez [1] to cope 

some drawbacks of Lattice Gas Automata (LGA) such as 

large statistical noise, limited range of physical parameters, 

non-Galilean invariance and difficult implementation in three 

dimension problem [2]. In the original derivation of LBE 

using relaxation concept, it was strongly connected to the 

underlying LGA. However, it was soon recognized that it 

could be constructed independently [3]. After that, the Lattice 

Boltzmann Method (LBM) has received considerable 

attention as an alternative to conventional computational fluid 
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dynamics for simulation complex flow problems. 

The simplest LBE is the Lattice Bhatnagar-Groos-Krook 

(LBGK) equation, based on a Single Relaxation Time 

(LBM-SRT) approximation [4]. Due to extreme simplicity, 

the LBGK equation has become most popular Lattice 

Boltzmann equation in spite of its well-known deficiencies, 

for example, flow simulation at high Reynolds numbers [5].  

Flow simulation at high Reynolds numbers, collision 

frequency ( ) which is the main ingredient of the LBM-SRT, 

exhibits a theoretical upper bound ( 2  ) that is related with 

the positiveness of the molecular kinematic viscosity [6]. 

Thus, stability problems arise as the collision frequency 

approaches to this limiting value [7]. For incompressible 

flows, the flow velocities are limited, since the model 

immanent Mach number needs to be kept sufficiently small. 

Therefore, a lowering kinematic viscosity, for achieving high 

Reynolds numbers for a given geometry, pushes the collision 

frequency towards the above-mentioned stability limit. It is 

possible to increase the value of ω by decreasing the size of 

lattices, however, it needs more computer resources [8]. 

Alternatively, using LBM-MRT increases stability limit 

and resolve the mentioned issue [9]-[17]. 

In the literature, there are comparative studies of the 

LBM-SRT and the LBM-MRT for lid driven cavity flows 

[2]-[18]. Those studies find that, the LBM-MRT is superior to 

the LBM-SRT at higher Reynolds number flow simulations, 

especially for numerical stability. Also, the LBM-SRT and 

the LBM-MRT produces accurate results for all Reynolds 

numbers. In addition that, the code using the LBM-MRT 

takes only 15% more CPU time than using the LBM-SRT.  

In the previous work [2], [18], [19], LBM-SRT and 

LBM-MRT were compared, basically, for the accuracy issues. 

The stability properties were not explicitly addressed, besides 

a qualitative statement that LBM-MRT is more stable than the 

LBM-SRT. The originality of the present investigation 

compared to the previous work [2], [18], [19] lies especially 

therein that the stability properties of LBM-SRT and 

LBM-MRT are systematically and quantitatively compared 

over a large range of Reynolds and Mach numbers. 

Furthermore, for a better overall assessment of the accuracy, 

stability and convergence issues, the results are always 

compared with those of the well-established CFD code 

ANSYS-Fluent [20]. In the LBM-SRT, the collision 

frequency, and in the LBM-MRT, the 7
th

 and 8
th

 relaxation 

rates ( 7 8s s ) are related to the molecular kinematic viscosity. 

Therefore, collision frequency and 7
th

 relaxation rate are 

compared with changing Reynolds and Mach number as a 

stability limits of the LBM-SRT and the LBM-MRT 

respectively. Other relaxation times ( 0 1 6, ,...,s s s ) for the 
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LBM-MRT are taken from Razzaghian et al.,’s study [18], 

their work is taken as a reference in investigation of 

LBM-MRT stability limits. 

 

II. NUMERICAL METHODS 

A. LBM with Single Relaxation Times (LBM-SRT) 

The lattice Boltzmann method is only applicable to the low 

Mach number hydrodynamics, because a small velocity 

expansion is used in derivation of the Navier-Stokes equation 

from lattice Boltzmann equation. It should be noted that the 

small Mach number limit is equivalent to incompressible limit 

[21]. 

The LBM method solves the microscopic kinetic equation 

for the particle distribution  , ,f x v t , where x  and v  is the 

particle position and the velocity vector respectively, in phase 

space  ,x v  and time  t , where the macroscopic quantities 

which are velocity and density are obtained through moment 

integration of  , ,f x v t .  

The discrete LBM-SRT equation, which is usually solved 

in two consecutive steps, i.e. in a “collision” and a following 

“streaming” step as provided below.   

Collision step: 

       , , , ,eqf x t t f x t f x t f x t               (1) 

 

Streaming step: 

   , ,f x e t t t f x t t                  (2) 

 

Note that, in the above “ ” denotes the post-collision 

values. It is obvious that collision process is completely 

localized, and the streaming step requires little computational 

effort by advancing the data from neighboring lattice points. 

In (Eq. 1),  ,f x t  and  ,eqf x t  are the particle 

distribution function and equilibrium particle distribution 

function of the α-th discrete particle velocity v , e  is a 

discrete velocity vector, and /t    is the collision 

frequency. Note that   is the collision relaxation time. 

The 2-dimensional and 9-velocity (D2Q9) lattice model 

(Fig. 1) is used in the current study for simulating the steady 

lid driven cavity flow. The proposed D2Q9 lattice model 

obeys also incompressible limit. For isothermal and 

incompressible flows, the equilibrium distribution function 

can be derived as the following form [21]. 

 
Fig. 1.  D2Q9 lattice model. 

   
2

2 4 2

3 9 3
, 1

2 2

eqf x t w e u e u u u
c c c

   
 

       
 

     (3) 

 

where w  is a weighting factor,   is the density, u  is the 

fluid velocity and  c x t   , for square lattice, is the lattice 

speed, and x ( x y   ), t  are the lattice length and time 

step size. In addition, the discrete velocities for D2Q9 lattice 

model are 

 

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1
e c

   
  

   

      (4) 

 

and the values of weighting vectors w are 

 

4 9 for 0

1 9 for 1,2,3,4

1 36 for 5,6,7,8

w










 
 

                    (5) 

 

The macroscopic values are obtained from the following 

equations. 

 
8 8

0 0

eqf f 
 


 

                          (6) 

8 8

0 0

1 1 equ e f e f   
   

                    (7) 

2

sP c                              (8) 

where P  is the pressure and 3sc c  is the lattice speed of 

sound.  The viscosity of the simulated fluids is defined by 

 

21 1

2
st c



 
   

 
                       (9) 

 

With the same way, collision frequency can be defined 

as   21 1 2sc t    . The time step size t  is chosen in 

such a way to result in a lattice speed c  is unity, resulting in a 

lattice speed sound of 1 3sc  . 

B. LBM with Multiple Relaxation Times (LBM-MRT) 

As mentioned before, LBM with Multi Time Relaxation 

can improve the numerical stability of the LBM. The 

LBM-MRT collision model of Q  velocities on a 

D -dimensional lattice is written as [9]-[16]. 

 

       1 ˆ, , M S , ,eqx e t t t x t x t x t           f f m m  (10) 

 

where M  is a Q Q  matrix which linearly transforms the 

distributions functions f  to the velocity moments m . 

 

M m f    and     1M f m              (11) 

 

the total number of discrete velocities 1Q b   or b  for 

model with or without particle of zero velocity, respectively. 
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Ŝ  is a non-negative Q Q  diagonal relaxation matrix, and 

the bold-face symbols denote the column vectors 

 

 

    
T

0

,

, ,..., ,b

x e t t t

f x e t t t f x e t t t

  

      

f
      (12a) 

      
T

0, , ,..., ,bx t f x t f x tf              (12b) 

      
T

0, , ,..., ,bx t m x t m x tm        (12c) 

      
T

0, , ,..., ,eq eq eq

bx t m x t m x tm           (12d) 

 

where T is transpose operator.  
For D2Q9 lattice model, moments are listed below, 

 

 
T

, , , , , , , ,x x y y xx yye j q j q p p m      (13) 

 

where   is the density, and 
x xj u  and 

y yj u  are x  

and y  components of the flow momentum, respectively, 

which are the conserved moments in the system. Other 

moments are non-conserved moments and their equilibria are 

functions of the conserved moments in the system [9]-[16]. 

With this particular order of moments given above, the 

corresponding diagonal relaxation matrix of relaxation rates. 

 

 

 
0 1 2 3 4 5 6 7 8Ŝ diag , , , , , , , ,

 diag , , , , , , , ,
x x y y xx xye j q j q p p

s s s s s s s s s

s s s s s s s s s 




     (14) 

 
The equilibria of the non-conserved moments 

 

 

 

2 2

1

2 2

2

2 3 ,

3

eq eq

x y

eq eq

x y

m e j j

m j j



 

    

   
              (15a) 

4 6 , eq eq eq eq

x x x ym q j m q j      ,            (15b) 

 2 2

7 8 ,   eq eq eq eq

xx x y xy x ym p j j m p j j            (15c) 

 

with the orderings of the discrete velocities and 

corresponding moments given above for D2Q9 lattice model, 

the transform matrix M in (10) is 

 

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

M 0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

 
 
     
    
 

   
    
 

   
   
 
  
 

  

     (16) 

 

For D2Q9 lattice model, the shear viscosity , which is 

same in (Eq. 9), but in this formula, 7
th

 and 8
th

 relaxation rates 

used instead of collision frequency and the bulk viscosity   

are; 

2

7

1 1

2
st c

s


 
   

 

 , 2

1

1 1

2 2
s

t
c

s


 
  

 

         (17) 

 

For D2Q9 lattice model, it is required that 
7 8s s  

and
4 6s s . Obviously the relaxation rates

0s , 
3s  and 

5s  for 

the conserved moments (  ,
xj ,

yj ) have no effect for the 

model.. The other relaxation rates, 
2s  (for  ) and 

4 6s s (for 
xq  and

yq ) do not affect the hydrodynamics in the 

lowest order approximation and only affect the small scale 

behavior of the model. Also, the relaxation rates (
4 6s s ) can 

affect the accuracy boundary conditions [22], [23]. 

The LBM-MRT model can reproduce the same viscosity 

with the LBM-SRT model, if we set
7 8s s   . And, the rest 

of the relaxation parameters (
1s , 

2s , 
4s  and 

6s ) can be 

chosen more flexibly [11]. 

As we mentioned before, in the LBM-MRT calculations, 

the study of Razzaghian et al. [18] is taken as a reference 

study, Thus, we will use 0 3 5 1s s s   , 1 2 1.4s s  , 

4 6 1.2s s   and  
7 8s s    for LBM-MRT calculations. 

And, we will compare the stability limits of the LBM-SRT 

and LBM-MRT using collision frequency (  ) and 7
th

 

relaxation rate (
7 8s s ) for lid driven cavity flow, 

respectively. 

 

III. RESULTS AND DISCUSSION 

A. Lid Driven Cavity Flow 

The lid driven cavity flows are investigated. The geometry 

and boundary conditions of the lid driven cavity flow are 

sketched in Fig. 2. Where 
xu  and 

yu  are x  and y  

component of the flow velocity, and 
0u  is the boundary value. 

Computations are performed for Reynolds numbers (Re), 

which are based on inlet velocity (u0) and hydraulic diameter 

(H) varying within the range 200 and 2000. Mach numbers 

(Ma) which are based on inlet velocity (u0) and speed of 

sound (cs) are varied between 0.09 and 0.54.  In order to 

acquire Mach numbers, inlet velocities are varied between 

0.0519 and 0.3117.  For each computation, various values of 

the collision frequency ( ) for LBM-SRT and 7
th

 and 8
th

 

relaxation rates ( 7 8s s ) for LBM-MRT are used, for 

detecting the highest possible value for a stable solution. 

 

 
Fig. 2.  Lid driven cavity flow. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.  LBM predicted non dimensional velocity ( 0xu u ) contours for 

Re=200 and lid driven cavity flow: (a) LBM-SRT, Ma=0.09, (b) LBM-MRT, 

Ma=0.09, (c) LBM-SRT, Ma=0.54, (d) LBM-MRT, Ma=0.54. 

 

Incompressible LBM formulations are used both 

LBM-SRT and LBM-MRT. Ansys-Fluent discretizes the 

incompressible Navier-Stokes equations with Finite Volume 

Method. Therefore, for validation LBM results, 

well-established CFD code, Ansys-Fluent is used. The same 

mesh sizes are used, of course, for validation 

Fig. 3 displays the predicted contours of nondimensional 

xu  velocity component for Re=200 and lid driven cavity flow, 

predicted for different Mach numbers, and for the LBM-SRT 

and the LBM-MRT. Comparing the solution for Re=200, one 

can see that Mach number variations within the considered 

range does not remarkably affect from the flow field for the 

LBM-SRT and the LBM-MRT. As also can be seen from the 

figure, LBM-SRT and LBM-MRT predictions are very close 

each other. 

Fig. 4 displays the predicted contours of nondimensional 

xu  velocity component for Re=2000 and lid driven cavity 

flow, predicted for different Mach numbers, and for the 

LBM-SRT and LBM-MRT. The main recirculation structure 

gets more symmetric for Re=2000, as expected based on 

previous studies on this typical benchmark flow problem 

Comparing the solution for Re=2000, one can see that Mach 

number variations within the considered range does not 

remarkably affect from the flow field for LBM-SRT and 

LBM-MRT. Additionally, there is unnoticeable difference 

between predictions of LBM-SRT and LBM-MRT 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.  LBM predicted non dimensional velocity ( 0xu u ) contours for 

Re=2000 and lid driven cavity flow: (a) LBM-SRT, Ma=0.09, (b) 

LBM-MRT,  Ma=0.09, (c) LBM-SRT, Ma=0.54,  (d) LBM-MRT, Ma=0.54. 

International Journal of Materials, Mechanics and Manufacturing, Vol. 2, No. 4, November 2014

320



  

 

(a) 

 

(b) 

Fig. 5.  Non dimensional velocity profiles for Re=200, (a) xu  velocity at 

x=H/2, (b) yu velocity at y=H/2. 

 

 

(a) 

 

(b) 

Fig. 6.  Non dimensional velocity profiles for Re=500, (a) xu  velocity at 

x=H/2, (b) yu  velocity at y=H/2. 

 

(a) 

 

(b) 

Fig. 7.  Non dimensional velocity profiles for Re=1000,                                         

(a) xu  velocity at x=H/2, (b) yu velocity at y=H/2. 

 

 

(a) 

 

(b) 

Fig. 8.  Non dimensional velocity profiles for Re=2000,                                         

(a) xu  velocity at x=H/2, (b) yu  velocity at y=H/2. 
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Fig. 5(a) compares the predicted 
xu  velocity profiles along 

a vertical line at x/H=1/2 for Re=200. The 
yu  velocity 

profiles for the same Reynolds number, along a horizontal 

line at y/H=1/2 are compared in Fig. 5(b). In Fluent 

computations, 2
nd

 Order Upwind scheme have been used as 

discretization scheme. Fluent and all LBM predictions are 

displayed in the figures. One can see that the all LBM 

predictions (from Ma=0.09 and Ma=0.54) are quite close 

each other and agree very well with the Fluent predictions for 

Re=200. 

Fig. 6(a), Fig. 7(a) and Fig. 8(a) present the predicted  
xu  

velocity profiles along a vertical line at x/H=1/2 for Re=500, 

1000 and 2000 respectively. The predicted yu  velocity 

profiles along a horizontal line at y/H=1/2 are compared in 

Fig. 6(b), Fig. 7(b) and Fig. 8(b) for Re=500, 1000 and 2000 

respectively. One can see from the figures that as the 

Reynolds number increases, the difference between the LBM 

and Fluent predictions becomes larger. The largest 

differences between the LBM and the Fluent computations 

are observed at Ma=0.09 for all Reynolds number. As it can 

also be seen from the figures, for all Reynolds numbers and all  

Mach numbers, the predictions of the LBM-SRT and the 

LBM-MRT are quite close each other. 

Based on the lid driven cavity flow, converge behaviors of 

the present LBM-SRT and LBM-MRT code and Fluent are 

also compared in Fig. 9, for Re=1000 and Ma=0.27. For a 

better comparability, the same criteria, namely the percentage 

variation (which indicated as % ε in the figures) of a variable 

at a given monitor point is taken as the indicator of the 

convergence, for all codes. For general variable   (which 

can be 
xu  or 

yu ), this is computed from 

1

% 100
n n

n

 




 
                         (18) 

In (18), the parameter n  denotes the iteration number. 

Obviously, the same grids are used, and computations are 

started from the same initial velocity field distributions (zero 

velocity everywhere in the flow field). Of course, the same 

computer is used for all computations. For the Fluent 

computations, the Simple pressure-correction procedure is 

used. For the under relaxation factors, the default values are 

applied for all variables [20]. As can be seen in Fig. 9, both 

Lattice Boltzmann computations (the LBM-SRT and the 

LBM-MRT) show, in general, a better overall convergence 

rate (according to present definition described by (Eq.18)). 

On the other hand, all the Lattice Boltzmann Method results 

exhibit some “wiggles” along the way of convergence. The 

residuals obtained by the Ansys-Fluent code exhibit a more 

smooth behavior. As it can also be seen in Fig. 9, converge of 

the LBM-SRT is achieved approximately %10 earlier than the 

LBM-MRT. 

B. Stability Limits 

For a range of Reynolds ( 200 Re 2000  ), and Mach 

( 0.09 Ma 0.54  ) numbers, different values of collision 

frequency  ( )  for the LBM-SRT and 7
th

 and 8
th

 relaxation 

rates ( 7 8s s ) for the LBM-MRT are applied, for detecting 

the maximum allowed value beyond which the solution 

becomes unstable, i.e, no converged steady-state solution can 

be obtained. Theoretically, it is obvious that the collision 

frequency or 7
th

 (or 8
th

) relaxation rates are not allowed to 

take the value 2, but needs to be smaller.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9.  Converge behavior (Re=1000 and Ma=0.27): (a) % ε in xu  at x=H/2, 

y=3H/4, (b) % ε in xu  at x=H/2, y=H/4, (c) % ε in yu  at x=H/4, y=H/2, 

(d) % ε in yu  at x=3H/4, y=H/2. 

International Journal of Materials, Mechanics and Manufacturing, Vol. 2, No. 4, November 2014

322



  

For the LBM-SRT, the predicted maximum allowed 

collision frequency for a stable solution (the solid lines) are 

presented in Fig. 10, as a function of Mach number, for 

different values of the Reynolds number. As can be seen from 

Figure 10, the maximum allowed collision frequency ( ) 

values decrease with Reynolds number, whereas for a given 

Reynolds number, also a decrease with the Mach number is 

predicted. 

 
Fig. 10.  Predicted maximum   values (LBM-MRT) for stable solution: 

The dashed lines and suffix “cf” refer to the curve of (19) and Table I. 

 

For the LBM-MRT, the predicted maximum 7
th

 and 8
th

 

relaxation rates for a stable solution (the solid lines) are 

presented in Fig. 11, as a function of Mach number, for 

different values of Reynolds number. The maximum 7
th

 and 

8
th

 relaxation rates increase with increasing Reynolds number 

and with decreasing Mach number.  

The curves mostly exhibit a linear like variation with the 

Mach number for the LBM-SRT calculations. Thus, a trial has 

been given to fit a linear curve to the predicted data, the 

coefficients being functions of the Reynolds number, which 

can be expressed as; 

   1 2Re ReMAX a Ma a                  (19) 

The coefficients  1 Rea and  2 Rea of (19), which are 

obtained by curve fitting to the predicted data are presented in 

Table I. The linear curves predict by (19) are also displayed in 

Fig. 10, as the dashed lines, where corresponding legends are 

designated by the suffix “cf” (for “curve fitting”) after the 

corresponding Re value. 

 
Fig. 11.  Predicted maximum 7s  ( 7 8s s ) values (LBM-MRT) for stable 

solution: The dashed lines and suffix “cf” refer to the curve of (20) and Table 

2. 

TABLE I: COEFFICIENTS  1 Rea  AND  2 Rea  OF (19) 

 LBM-SRT 

1a   0.018ln Re 0.396   

2a   0.002ln Re 1.7897   

 

For the LBM-MRT calculations, the curves mostly exhibit 

a 2
nd

 order polynomial like variation with the Mach number. 

Therefore, a trial has been presented to fit a 2
nd

 order 

polynomial curve to the predicted data, the coefficients being 

functions of the Reynolds number, which can be expressed as; 

 

   2

7, 8, 1 2 3Re ReMAX MAXs s b Ma b Ma b            (20) 

 

The coefficients  1 Reb ,  2 Reb  and  3 Reb  of (20), 

which are obtained by curve fitting to the predicted data are 

presented in Table 2. The 2
nd

 order polynomial curves predict 

by (20) are also displayed in Fig. 11, as the dashed lines, 

where corresponding legends are designated by the suffix “cf” 

after the corresponding Re value, 

 
TABLE II: Coefficients  1 Reb ,  2 Reb  and  3 Reb  of (20) 

 LBM-MRT 

1b   0.26ln Re 1.1415   

2b   0.04856ln Re 3.3577  

3b   0.048ln Re 2.2777   

 

IV. CONCLUSION 

Incompressible steady state formulations of the LBM-SRT 

and the LBM-MRT are applied to laminar flows for Reynolds 

numbers between 200 and 2000, where the Mach number is 

also varied between 0.09 and 0.54. The lid driven cavity flow 

problem is analyzed. Stability limits, in terms of the maximum 

allowed collision frequency ( ) for LBM-SRT and 7
th

 and 

8
th

 relaxation rates (
7 8s s ), as a function of Reynolds and 

Mach numbers are explored. It is observed that, for low Mach 

and high Reynolds number the LBM-MRT is more stable than 

LBM-SRT. Collision frequency decreases with increasing 

Reynolds and Mach numbers for the LBM-SRT. However, 7
th

 

and 8
th

 relaxation rates decrease with decreasing Reynolds 

numbers and with increasing Mach numbers. Comparisons 

with the general purpose, finite-volume based CFD code, 

using incompressible formulation has served as a validation 

of the present Lattice Boltzmann Method (both the LBM-SRT 

and the LBM-MRT) based code, at the same time confirming 

that the present incompressible Lattice Boltzmann 

formulation predicts flow field that behave sufficiently 

incompressible for the considered range of Mach numbers. 

Also, converge behavior of the both Lattice Boltzmann codes 

(both LBM-SRT and LBM-MRT) and finite volume based 

CFD code are explored. It is observed that, all Lattice 

Boltzmann codes are much faster than finite volume based 

CFD code. Also, convergence speed of the LBM-SRT is 

better (approximately %10) than LBM-MRT with using same 

grid size. 
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