
  

 

Abstract—The advances in silicon photonics related device 

development have been evolved into standard complementary 

metal-oxide-semiconductor (CMOS) technology in recent years. 

The emission of visible light (400-900 nm) by a monolithically 

integrated silicon p-n junction under reverse bias presents the 

silicon light-emitting device (Si-LED). As an integrated optical 

source, it is then developed for coupling light into the optic 

waveguide. Through the Monte Carlo and Rsoft BeamPROP 

simulations, the vertical emission, focusing, refraction, splitting 

and wave-guiding are also optimized using the same CMOS 

technology. Since the Si-LED, the SiO2-waveguide, and the 

Si-photodetector can be monolithically integrated on the same 

bulk-Si substrate, a concise micro-opto-electro-mechanical 

systems (MOEMS) could be realized in the modern CMOS 

structural & integrated circuitry standard platform. 

 
Index Terms—Silicon LED, micro-opto-electro-mechanical 

systems, waveguide, CMOS technology, monolithic integration. 

 

I. INTRODUCTION 

The exponential growth of global data volumes and 

associated data centers is outpacing the industry’s ability to 

efficiently produce more powerful data processing integrated 

circuits in accordance with Moore’s Law. The modern trend 

of deploying more parallel computers with higher capacity 

data storage solves the problem of lagging microprocessor 

speeds, but the resultant significant proliferation of separate 

data computing equipment in turn leads to a growing need for 

faster and more efficient communication between computers 

and data storage. Hence, the material of silicon based  
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optoelectronics is considered to enable future computing 

systems with optical input-outputs co-packaged with CMOS 

chips to circumvent the limitation of electrical interface. 

Despite of the indirect bandgap in Si, a series of viable Si 

light-emitting technologies have recently become available 

that enable the integration of light sources directly into Si 

CMOS technology [1]. The latest attempts for realizing 

optoelectronic systems in CMOS technology have until now 

mainly been focused utilizing wavelengths at 1550 nm, 

mainly because of the ease of design and fabrication of 

waveguides in this regime [2]. However, no effective optical 

sources and Si detectors are available at this wavelength. 

Being different from the silicon photonics work that is done 

at wavelengths around 1550 nm, it is observed that visible 

light with a typical spectral distribution curve in the 

wavelength range of 365 to 689 nm is emitted by silicon p-n 

junctions both in avalanche breakdown and in breakdown by 

internal field emission [3]. The light emission implies that Si 

diode under avalanche breakdown condition is a potential 

light transmitter which can monolithically integrate with 

silicon electronic circuits using the standard S-CMOS process 

[4], since the light source is a silicon device. On the other 

hand, a need for developing shorter wavelength optical 

sources (~450 nm) in order to act as an optical clock pulses in 

next generation CMOS circuitry has been expressed [5]. 

If optical source, detector, waveguides, and sensors could 

be realized on the same CMOS chip at the visible wavelength 

range, various on-chip-based micro-photonic systems can be 

realized. Achieving these goals can lead to diverse low cost 

“all-silicon” opto-electronic systems, which will be the 

“smarter” and more “intelligent” CMOS chips of the future. 

These systems could lead to new products for especially the 

medical and bio world. Such a new field could be 

appropriately named “Si CMOS photonic micro-systems.” 

These systems also do not require ultrahigh frequency 

bandwidths and the emission powers of these Si light-emitting 

diodes (LEDs) may be sufficient to sustain the operation of 

such systems. This can lead to many new products and open 

up new markets. 

This paper reviews the Si-LEDs, which are fabricated in 

standard CMOS process with no change to the CMOS design 

and processing procedures, we have jointly realized in the 

past two decades. By coupling the device to a standard mode 

optical fiber, first interation optical communication between 

one CMOS device and a second is successfully constructed. A 

new technical approach is proposed to resolve the issue of 

optical properties with native interband electro-optical 

emission in Si. Finally, the potential applications of Si-LEDs 
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into micro-photonic systems and MOEMS are furthermore 

highlighted as a conclusion. 

 

II. FIELD-EFFECT ELECTROLUMINESCENCE IN SILICON 

The profile about the composition and structure of a 

gate-controlled diode based LED structure is shown in Fig. 1. 

It is a poly-Si gate p-channel MOSFET, with gate oxide 

thickness of 4000 Å. The width of the device is ~175.5 μm 

and the channel length is ~6 μm. The poly-Si gate thickness is 

~400 Å [6]. 
 

 

Fig. 1. Cross-section view of the a gate-controlled diode structure (i.e., one 

half of the Si-PMOSFET device)  

 

In contrast, Fig. 2 shows details about the composition and 

structure of the planar Si n+p LED structure. The structure 

consists of a heavily doped The structure consisted of a 

heavily doped n+, 10
19

 cm
-3

 doped layer of 0.3 µm thickness 

defined and realized in a 0.75~1.25 Ω•cm p-type substrate by 

means of appropriate ion beam implantation, masking and 

dopant activation procedures. Appropriate n-well guard-ring 

structures were placed on the periphery of the n+ region in 

order to ensure a uniform and planar breakdown at the planar 

n+p interface [7]. 
 

 

Fig. 2. Structural details of a Si n+p abrupt diode (after ref. [7]). 

 

Further, Fig. 3 presents a modified structure. When a 

reverse bias voltage is applied between the inner p+ centroid 

and the n+ ring arrangement, a lateral and concentric 

electrical field is created between the p+ centroid and the n+ 

rings, which results in the creation of extended depletion layer 

at each n+p interface facing the p+ centroid. Due to the high 

doping concentration at the surface of the intersecting Si-SiO2 

interface, the light is emitted vertically from the device 

through the thin residual SiO2 layer present on the Si surface 

[8]. 

 

III. DESIGNING LATERAL WAVEGUIDES FOR CMOS 

STRUCTURES 

The current CMOS technology can create a thin oxidation 

layer that is used as an isolation layer in the trench technology. 

If the layer is enhanced and followed by a layer of high 

refractive index material, such as Si nitride, interesting lateral 

optical conductors and waveguides can be constructed at the 

Si–over layer interface. Optical sources positioned at the 

trenches’ edges enable optimum coupling of optical radiation 

into the trench waveguide. In a similar way waveguides can be 

fabricated in the outer CMOS layers. 

 

 
Fig. 3. Cross-section view of a Si-LED with diameter of 60 µm. Further 

design details present a schematic diagram showing  the origin and the 

location of the light emission process at each n+ ring structure (after ref. [8]). 

 

 
Fig. 4. Advanced optical simulation of the electrical field propagation in a 

0.5-μm-wide Si nitride layer embedded in SiO2 in CMOS integrated 

circuitry using finite element analysis and solutions of Helmholtz’s equation. 

Multi-mode optical propagation at 750 nm is demonstrated over 20 μm 

distance with a loss smaller than 1 dB · cm−1 . 

 

Advanced optical simulation software (RSOFT Beam 

PROP) is implemented to design and simulate specific CMOS 

based waveguides operating at 750 nm based on CMOS 

materials and parameters. This software uses an advanced 

finite analysis method where the volume is divided up into a 



  

large number of matrix elements. Helmholtz’s equation 

predicts the optical parameters along the matrix based on the 

initially defined optical fields [9]. 

It is preliminarily shows that a multimode, as well as single 

mode wave-guiding can be achieved. Fig. 4 shows a three 

dimensional (3-D) view of the electrical field along the 

waveguide of a 0.6 μm wide Si nitride waveguide. 

Multimode propagation is demonstrated with almost zero 

loss up to a distance of 20 μm. Multimode propagation in 

CMOS micro systems has the advantage of having a large 

acceptance angle for coupling optical radiation from a Si LED 

into and out of a waveguide. Our calculations show that a 

coupling efficiency of 0.38 can be achieved for a flat 

Si-emitting surface positioned at the edge of the Si nitride 

core of the waveguide. This is mainly due to the better 

refractive index matching between Si (3.76 at 750 nm 

wavelength) to Si nitride (2.00 at 750 nm). 
 

 

Fig. 5. Simulation of the optical field propagation in a Si nitride layer in 

CMOS integrated circuitry using finite element analysis and solutions of 

Helmholtz’s equation. Single-mode optical propagation is demonstrated at 

750 nm over a distance of 20 micron for a 0.2-μm wide, Si-oxide-embedded 

and Si nitride waveguide. 

 

Fig. 5 shows the predicted optical simulation for a 0.3-μm 

diameter Si oxi-nitride waveguide embedded in Si oxide. The 

two-dimensional plot of the electrical field propagation along 

the waveguide shows clearly single-mode propagation. The 

calculated loss curve in the adjacent figure shows almost zero 

loss over a distance of up to 20 μm. The coupling efficiency 

into such a waveguide is, however, much reduced to values of 

about 0.05. Multimode to single-mode converter structures 

can then be used to increase the overall coupling efficiency 

into the waveguide. 

 

IV. APPLICATIONS OF SI DEVICES IN CMOS-BASED 

MICROPHOTONIC SYSTEMS 

A hypothetical micro-photonic system is demonstrating  in 

Fig. 6 consists of an Si-LED, a Si detector together with 

waveguides integrated monolithically in a CMOS structure. 

Wide area Si-LEDs are used in order to increase the total 

optical emission power into the waveguide systems [10]. 

Appropriate filtering by means of ring resonators, and 

enhanced phase contrast detection can be obtained by 

utilizing unbalanced Mach-Zehnder interferometers. Near the 

layout end, an opening is integrated in the CMOS over layers 

by post processed RF etching to enable gas or liquids to 

interact with the evanescent field of a waveguide section and 

introduces intensity and/or phase contrast changes. 
 

 

Fig. 6. Schematic diagram of a CMOS-based micro-photonic system that can 

be realized using an on-chip Si Av LED, a series of waveguides, ring 

resonators, and an unbalanced Mach-Zehnder interferometer. A section of 

the waveguide is exposed to the environment and can detect phase and 

intensity contrast due to absorption of molecules and gases in the evanescent 

field of the waveguide (after ref. [10]). 

 

Hence, a complete micro-photonic sensor system can be 

integrated into standard CMOS circuitry. The added 

intelligence component, the lowering in cost and the increase 

in reliability of such systems can be significant. The source & 

detector and waveguide arrays can be arranged to find some 

performances in the emerging field like bio- and 

nanotechnology. 

 

V. ANALYSIS OF ELECTROLUMINESCENCE IN SI MATERIAL 

Silicon is an indirect bandgap material, but light emission 

could be observed from reverse-biased pn junctions. Since 

electron-hole pair is produced during avalanche breakdown, 

some radiative recombination can occur. Both the electrons 

and holes can be heated by the electric field. The radiatvie 

transition between hot carriers emit photons larger than the 

bandgap. Hence, the luminescence during avalanche 

breakdown is characterized by a broad emission spectrum. 

Since the energy for impact ionization by hot carrier is about 

1.5Eg, the emission spectrum extends to ~ 3Eg (where the 

energy gap Eg is of ~1.12 eV for silicon). This represents 

transitions from the hottest electron energy to the hottest hole 

energies. In this section, several attempts are made to 

understand the origin of light from avalanching silicon p-n 

junction, with physical model for the light emission. 
Fig. 7 shows that, no matter what the detailed structure of 

the silicon pn junction is, it always emit light in a broad 

spectrum from 450 to 800 nm with characteristic peaks at 500 

and 650 nm [4]. 

Based on the classical electromagnetic theory, the kinetic 

energy of electron is released in the form of photons if an 

electron collides with a singly charged Coulombic center. The 



  

electromagnetic field is quantized as a photonic system. 
 

 

Fig. 7. The spectra of the emitted light from the several types of silicon pn 

junction measured at the avalanche breakdown operating point. 

 

Using Maxwell’s equation in which the particles are the 

sources for current and charge distribution, the exact field at 

the position of the particle can be obtained from 

self-consistent calculation. The kinetic equation becomes 

       v
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where the left hand side contains only averaged quantities and 

the so-called collision terms on the right hand side contains all 

microscopic interactions [11]. The collision term for 

momentum transfer can be evaluated for drifting Maxwell 

distribution functions, and it is found that 
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where   and   are the drift velocities of species   

and   [12]. 

 

 

Fig. 8. Optical absorption coefficient of silicon. 

 

Since the photons with energy above 1.08~1.12 eV (i.e., 

the silicon energy bandgap lie) are absorbed, the 

electroluminescence spectra peak shit shown in Fig. 7 should 

be related to the optical absorption coefficient that has been 

given by the Macfarlance absorption model [13] , which is 

also characterized in Fig. 8. 
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absorption   (3) 

It is further interpreted the spectra obtained under 

avalanche breakdown conditions, but the multitude of the 

mechanisms described above shows a great divergence in the 

interpretation of spectra and proves that the origin of the light 

emission is not yet well defined and remain in debate [14]. 

 

VI. CONCLUSION 

This paper describes the manufacturing and production 

processes of a micro-system in modern nano-scaled MEMS 

technology. The potential applications of 600 to 850 nm Si 

LEDs and 600 to 850 nm-based waveguides in CMOS-based 

optical link toward the micro-photonic systems and MOEMS 

has been demonstrated. The physical mechanisms responsible 

for the photon emission identified at some extent to further 

clarify that the self electro-optic effect of the silicon light 

source could be further improved for the realization of 

flip-chip bonded monolithic CMOS optoelectronic smart 

pixels, in which Fig. 9 presents three different types of 

structure [15]. 
 

 

Fig. 9. The flip-chip bonding fabrication procedure. 

 

Finally, the study of multi-terminal low-voltage CMOS 

Si-LEDs with emission efficiency enhancement is suggested  

to be analyzed in more detail in near future [16]. 
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