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Abstract—In general, the optimization problems arise in real 

life situations are constrained in nature. Handling such 

problems becomes more difficult when an optimization problem 

involves some equality constraints. The computation complexity 

increases exponentially if the constraints are non-linear and 

non-convex. In order to solve such problems, a large number of 

evolutionary approaches have been suggested in the literature. 

In such approaches, penalty function method and boundary 

simulation method are more popular to solve equality and 

inequality constraints problems.  In this paper, an efficient and 

novel approach namely ‘Drosophila Food-Search Constrained 

Optimization Algorithm (DFCOA)’ has been proposed that 

helps for the robust generation of feasible regions during 

simulation. The proposed algorithm is initially tested on ten 

typical constrained benchmark problems with different tastes. 

Further two real life engineering problems have also been 

solved. The simulation results confirm that the proposed 

algorithm works better than some of the state-of-the-art 

algorithms.

Index Terms—Tournament selection, mQA, redundant 

search, GPCR. 

I. INTRODUCTION

Development of robust algorithms to solve complex 

optimization problems has been one of the most important 

issues in the branch of Computer science. Mostly, traditional 

methods become handicapped in solving such complex 

structured problems. In such cases, Evolutionary Algorithm 

(EA) is an alternate paradigm.

The global optimization algorithms have been widely 

applied in many fields of science and engineering. The main

concern of these methods is to find the global optimal 

solution over the existence of several local optima in the 

systems. In searching global optimal solution, EAs work on a 

set of individuals (called population) by repeated application 

of their stochastic operators. However, the presence of 

equality constraints in the optimization problem makes it 

more complex. Eventually, the involvement of bit constraint 

violation in the optimal solution obtained by EAs is 

unavoidable.   

Some of the most popular EAs suggested in the literature 

are Genetic Algorithm (GA) [1], Particle Swarm 

Optimization (PSO) [2] , Simulated Annealing algorithm (SA) 

[3], Cultural Evolutionary algorithm [4], Modified 

Differential Evolution (COMDE) [5], Rough Penalty Genetic 

Algorithm (RPGA) [6], Modified Artificial Bee Colony 

algorithm (MABC) [7] etc. However, most of these 
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algorithms are either complicated or suffer with 

computational burdensome to handle equality constraints. 

Moreover, most of them are involved with some of the 

parameters to fine tune. Therefore, in this paper, a new 

algorithm called Drosophila Food-Search Constrained 

Optimization Algorithm (DFCOA) algorithm is presented. 

DFCOA is based on the food search behavior of a fruit fly 

namely „Drosophila Melanogaster‟. DFCOA comprises of 

Drosophila Food-Search Optimization (DFO) algorithm [8] 

with modified penalty method for constraint handling.  

The rest of paper organized as follows. Section II presents 

a discussion about Drosophila Melanogaster. Section III 

introduces constrained handling technique. In Section IV, the 

proposed Drosophila Food-Search Constrained Optimization 

Algorithm is introduced. Section V comprises of the 

computational results for benchmark problems. Section VI 

presents the results of real life problems. Section VII 

concludes the present study with highlighting the future

scope of research.  

II. DROSOPHILA MELANOGASTER

Drosophila Melanogaster (Fig. 1) is a fly consisting of 

many sensory systems including taste and olfaction [9]-[10]. 

Drosophila consists with proboscis (Fig. 2), wings, legs and 

ovipositor [10].The body of a fly surrounded by a hair like 

structure called Sensilla. The sensilla are of two types (a) 

internal and (b) external sensilla. The external sensilla have 

to search preferable food sources and internal sensilla 

analyze the foods before allowed into digestive system. 

Further, internal sensilla used either as sensor for harmful 

substances or to verify substances for sucking. The 

Drosophila ingest food through it proboscis. The taste bristles 

and pegs have a terminal pore at the tip to allow direct access 

of food substances to the dendrite process of the gustatory 

receptor neuron (GRNs). 

         

     Fig. 1. Drosophila Melanogaster.           Fig. 2. Gustatory receptors.

The Drosophila also consisting with olfactory receptors 

[11] in which 60 Drosophila olfactory receptors (DOR) genes 

encode a family of G-Protein-Coupled-receptors, whose 

function is to recognize odorant molecules. Each olfactory 

receptor neuron (ORN) expressed as a single odorant 

receptor. The optimized Food-Search behavior of Drosophila
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has been modeled in to optimization algorithm and has been 

successfully used to solve unconstrained optimization 

problem in [8]. The beauty of this algorithm is it is robust and 

is parameter free. In this paper, the code is developed in to 

handle constraints. Special care has been taken to deal with 

equality constraints too. 

III. CONSTRAINED HANDLING TECHNIQUE 

In last few decades many techniques have been developed 

by the researches for handling of constraints. According to 

Michalewicz [12], Eiben [13] and Coello [14], the existing 

techniques have been categorized in to five different types 

such as (a) Penalty methods, (b) Special representation and 

operator methods, (c) Repair methods, (d) Separation of 

objective and constraints methods and (e) Hybrid methods. 

However, in spite of many constraint-handling techniques 

exist in the literature; the penalty method is most commonly 

used by the researchers due to its efficient mechanism. This 

paper also uses the same penalty function method as follows. 

1) The degree of constraint violation for an individual x is 

evaluated by using the relation 

1

1
( ) ( )

m

j

j

G x G x
m



  and 

the degree of constrained violation is calculated by 

equation below

( ),0} 1
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x j q
G x
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h x q j m

  




   

where gi(x) are the inequality constraints and hj(x) are the 

equality constraints present in the given optimization 

problem.  is a small positive tolerance value of equality 

constraints and is taken as 0.00001, q is the number of 

inequality constraints and m q is the equality constraints. 

This is how the penalty method is being modified.

2) The fitness functions of each individual in the population 

then calculated by equation below. 

( ) ( ) ( )

, 0 .

F x f x R G x

where if and otherwise zero  

 

 

f and R stands as the objective function and penalty 

parameter respectively.  „R‟ plays an important role to push

the infeasible solutions towards feasible region. However, 

inappropriate value-assignment of R may sometimes lead to 

produce absurd results. Hence the R is fine tuned and a best 

suit value is proposed in Section V. 

3) The tournament selection strategy is used to select the 

better fit individual between any two arbitrary 

individuals. 

IV.   DROSOPHILA FOOD-SEARCH CONSTRAINED 

OPTIMIZATION ALGORITHM

Based on food-searching behavior of Drosophila 

Melanogaster, a new algorithm is proposed in this section for 

finding global optimal solution of a non linear constrained 

optimization problem. It is named as Drosophila 

Food-Search Constrained Optimization Algorithm (DFCOA).

Due to its highly sensitive sensory system including taste and 

olfaction, it is rich in the history of genetics. The olfactory 

receptors can sense all kinds of food sources whose scents 

blowing in the air and after getting the food sources, it can fly 

towards the foods and check the preference of the food 

sources by using gustatory receptors (GRs) present in the 

external sensilla of proboscis and then pass signal to the 

internal sensilla, whether it is allowed in digestive system or 

not. The internal sensilla of Drosophila comprises with 

GPCRs, a seven trans-membrane receptor that can sense 

molecules from outside the cell and activate the ligand 

binding [15]. The tendency of protein binding with the help 

of ligand depends on the concentration of ligand. If the ligand 

concentration is high, than GPCR will be activated and 

generate signal to the SOG region of the brain via nervous 

system and analysis took palace. If the input is more, then the 

SOG region automatically provides a positive signal to the 

proboscis to take food. Thus depending on the optimized 

food searching behavior of Drosophila the population based 

algorithm for solving of constrained problems is designed. 

The pseudo code of DFCOA algorithm is given below.

begin

        Gen = 1

  Generate initial population 

  Apply constrained Handling Technique

  Evaluate fitness of each individual   

  While (termination criterion is not satisfied) do

  Gen = Gen + 1  

  Apply Tournament selection (size 2)  

  Apply Redundant Search

  Apply mQA

end do

end begin

V.   COMPUTATIONAL RESULTS  

The proposed algorithm is implemented in Dev C++ on a 

Pentium Dual Core 2.00 GHz machine with 1GB RAM under 

Windows7 platform. A total of 30 runs with population size 

100 are conducted for each problem with maximum of 1, 

50,000 function evaluations as stopping criterion. To start a 

run, different seeds are used in order to generate the random 

numbers for the initial population. The proposed algorithm 

DFCOA is compared with a newly developed algorithm 

Hybrid Evolutionary Algorithm (HEA) [16], where the 

number of function evaluation used as 3, 50,000 on 4 

problems of g-Series and 6 problems of B-series as taken 

from[16] (given in Appendix- I & II) . 

After experimental results, the values of R for g-Series and 

B-Series problems are fixed as 10000.  The results for 30 

independent runs for g-series problems are given in Table I

and for B01-B06 are given in Table II with best, mean, worst 

and standard deviation.

From the results of Table I it is observed that g03, g05 and 

g11, DFCOA performs better than HEA, whereas for 

problem g13, the best achieved value by DFCOA is better 
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than that of HEA. Mean, worse and standard deviation (SD) 

are not that good as HEA.  However, from Table II, it is 

observed that for all test function from B01 to B06, DFCOA 

provides better function values than HEA. Also, DFCOA 

reaches the optimal value for all test functions with less SD. 

TABLE I: THE COMPARATIVE RESULTS FOR PROBLEMS OF G-SERIES

Prob Algo. Best Mean Worst Std Dev

g03
HEA -1.000 -1.000 -1.000 0.00e+00

DFCOA -1.000 -1.000 -1.000 0.00e+00

g05
HEA 5126.499 5128.144 5137.793 5.21e+00

DFCOA 5126.499 5126.499 5126.499 0.00e+00

g11
HEA 0.75 0.75 0.75 4.52e-09

DFCOA 0.75 0.75 0.75 0.00e+00

g13
HEA 0.053950 0.057864 0.065063 3.81e-03

DFCOA 0.053985 0.126252 0.436294 2.71e-02

Thus, from the comparative results it can be concluded that 

DFCOA performs overall better than HEA.

VI. REAL LIFE PROBLEMS 

In order to realize the efficiency of the DFCOA in solving 

real life problems, in this section, two real life problems 

namely Welded Beam Design-I, II and Pressure Vessel 

Design problem (marked as RP1-I, RP1-II and RP2, 

respectively) are considered. The results of DFCOA is 

compared with a newly developed algorithm called Hybrid 

Genetic Algorithm with Flexible Technique (GAFAT) [17], 

Differential Evolution Algorithm and Tissues P Systems 

(DEPTS) [18]. The population size for all the problems is 

fixed at 100 and average of best objective function value for 

all the 30 independent run with maximum function 

evaluation 6000 are reported in Table III. 

From the results in Table III, it is concluded that DFCOA 

performs better than DEPTS and GAFAT in RP1-I and 

RP1-II both but for RP2, DEPTS performs better in 

comparison with DFCOA. However, it is here worth noting 

that the results reported in [17] and [18] are consisting with 

20000 and 10000 function evaluations, whereas DFCOA 

uses only 6000 number of function evaluations. Usage of less 

number of function calls along with very small impact of SD 

confirms that DFCOA is a more stable algorithm and has 

faster rate of convergence.

TABLE III: THE COMPARATIVE RESULTS OF REAL LIFE PROBLEMS

Probl. Algo. Best Mean Worst Std Dev

RP1-I
GAFAT

DEPTS

DFCOA

1.724852

1.724852

1.724852

1.724852

1.724852

1.724852

1.724852

1.724852

1.724852

5.80e-16

2.10e-07

4.59e-08

RP1-II
GAFAT

DEPTS

DFCOA

2.380956

***

2.380956

2.380956

***

2.380956

2.380956

***

2.380956

1.10e-15

***

1.02e-07

RP2
GAFAT

DEPTS

DFCOA

6059.071

5885.333

6059.071

6059.0714

5887.316

6059.0714

6059.071

5942.323

6059.071

2.80e+01

1.0e+01

0.00e+00

„*‟ denotes no results given.

VII. CONCLUSION  

This paper introduces a nature inspired algorithm called 

Drosophila Food-Search Constrained Optimization 

Algorithm (DFCOA). The proposed algorithm depends on 

the food-searching behavior of a fly Drosophila. To test the 

efficiency of DFCOA, a variety of 10 typical constrained 

optimization benchmark problems involving equality 

constrained have been solved. Further, two real life 

engineering problems have been solved by DFCOA. The 

statistical results and analysis concludes that the efficiency

and efficacy of DFCOA is better than some state-of-the-art 

algorithms in solving not only to benchmark problems but 

also real life problems.  DFCOA is robust and convergence 

faster with higher rate of stability. As a future scope of 

research, DFCOA may be applied to wide spectrum of 

engineering problems including robotics, electrical network, 

mechanical designs and manufacturing, etc. It can also be 

extended to solve multi-
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TABLE II: THE COMPARATIVE RESULTS FOR PROBLEMS B01- B06

Problems Algorithm Best Mean Worst Std Dev

HEA
-47.627 -46.988 -46.497 3.50e-01

DFCOA -47.627 -47.627 -47.627 0.00e+00

HEA 961.715 961.717 961.721 1.71e-03

DFCOA 961.715 961.715 961.715 1.10e-03

HEA 194.113 205.921 288.427 7.87e+01

DFCOA 194.113 194.231 194.562 5.60e-01

HEA 0.00 0.00 0.00 0.00e+00

DFCOA 0.00 0.00 0.00 0.00e+00

HEA 6.338 6.316 6.366 3.60e-02

DFCOA 6.338 6.340 6.362 2.16e-03

HEA -1.000 -1.000 -1.000 1.78e-05

DFCOA -1.000 -1.000 -1.000 1.06e-09

B01

B02

B03

B04

B05

B06
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