
  

 

Abstract—Shot peening is a process of cold working a part 

that increase its resistance to metal fatigue and some forms of 

stress corrosion. Shot peening causes plastic deformation in the 

surface of the peened part and leads some changes in 

mechanical and metallurgical properties of it. Artificial 

intelligence (AI) systems such as artificial neural networks 

(ANNs) have found many applications to predict and optimize 

the engineering problems in the last few years. In present study 

effects of SP on mechanical and metallurgical properties of 

18CrNiMo7-6 are investigated by ANN. Network has been 

developed based on back propagation error algorithm. In order 

to train the network data of experimental tests results were used. 

Experimental tests were concluding different SP types: single 

step SP and dual step SP with different SP intensities. Testing of 

the ANN is accomplished using experimental data not used 

during networks training. Distance from the surface and Almen 

intensity are considered as input parameters and residual stress, 

remnant austenite content, Cauchy breath, domain size and 

microhardness are regarded as output parameters of the 

network. The comparison of obtained results of ANN’s response 

and experimental values indicates that the networks are tuned 

well and the ANN can be used to predict the SP effects on 

mechanical and metallurgical properties of materials. 

 

Index Terms—Step shot peening, mechanical properties, 

artificial neural network, back propagation algorithm.  

 

I. INTRODUCTION 

Shot peening is a cold working process in which the 

surface of a part is impinged with small spherical or 

cylindrical meida, aimed to create the beneficial compressive 

residual stresses (CRS), induce both the structure change 

near the surface layer of the material [1]-[3]. The CRS 

produced in the peened layer can prevent or greatly delay the 

crack propagation, and thus improve the fatigue life of the 

material [4]-[6]. The maximum CRS achieved is typically 

near the yield strength of the material. The peening intensity 

is directly proportional to the portion of the total energy of 

the shot stream transferred to the component. SP process can 

be carried out in several steps such as single, dual and triple 

step SP; although all of the steps have their specific effects on 

related material. Dual SP may produce even better 

improvement in fatigue resistance than a single peening 

treatment. In this process a component is fully peened at the 
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special intensity and then re-peened in a second operation at a 

lower intensity. Barry [7], Tekeli [8] and Lindemann [9] have 

proved that SP can be beneficial to the application of the 

steels if the appropriate SP parameters are selected. However, 

the shots bombardments on the surface often lead to flaws or 

roughness increment, which may outweigh the beneficial 

effect of the compressive stresses induced by SP. Therefore, 

the optimization of SP conditions is of great importance to 

maximize its beneficial effects. Previous studies [6]–[9] 

focus mainly on one-step SP technology, but few 

investigations on multistep SP technology have been 

reported [10]. 

18CrNiMo7-6. steel is widely used in many industrial 

components, specifically in high speed heavy-duty gear field 

[11]. However, mesh or angular carbide is often produced in 

carburizing process, and cracks are also produced in 

quenching or machining process, which can reduce the 

fatigue strength and service life of 18CrNiMo7-6 steel 

components. Therefore, 18CrNiMo7-6 steel components are 

often made surface treatment in order to increase their service 

life which depends mainly on the condition of the surface 

layer. 

Artificial intelligence (AI) systems are widely accepted as 

a technology offering an alternative way to tackle complex 

and ill-defined problems [12]. They can learn from examples, 

are fault tolerant in the sense that they are able to handle 

noisy and incomplete data, are able to deal with nonlinear 

problems, and once trained can perform prediction and 

generalization at high speed. Artificial neural network (ANN) 

approach as one the AI system is well known types of 

evolutionary computation methods in last decades. Also 

ANN technique has been adapted for a large number of 

applications in different scientific areas. 

The aim of present study proposes a new approach based 

on artificial neural networks (ANNs) to investigate the 

effects of SP process on mechanical and metallurgical 

properties of 18CrNiMo7-6 Steel. Residual stress, remnant 

austenite content, Cauchy breath, domain size and 

microhardness were modeled by ANN. Fifteen data of 

experimental tests results from the total of thirty, are used to 

networks training, while in the networks testing 15  different 

experimental data which were not used during training are 

used. Since the whole experimental results did not include in 

the training sets and performance of ANN is evaluate in a fine 

way. 

 

II. EXPERIMENTAL TESTS 

Experimental data used in this study are achieved from Fu 
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et al. [10] work. In their paper the effects of single and dual 

step shot peening on the structure and mechanical properties 

of low-alloy steel have been investigated using X-ray 

diffraction line profile analysis. The samples are 

manufactured from casehardened steel 18CrNiMo7-6 (EN 

10084). The chemical composition of 18CrNiMo7-6 steel is 

shown in Table I. All specimens (15×15×7mm) were 

austenitized at 950                                            C 

for 2 h and quenched in oil, followed by tempering at 180   C 

for 3 h and cooling in air. X-ray diffraction line profile 

analysis (XRDLPA) is a well-known non-destructive 

technique (NDT). It is often used to determine the residual 

stresses in the components wherein the crystalline planes are 

used as strain gauges [13]. When the metal components are 

under stresses, the resulting elastic strains can cause the 

spacing changes of atomic planes in the metallic crystal 

structure. These inter-planar atomic spacings can be directly 

measured via X-ray diffraction (XRD), and the total stresses 

on the metal can be calculated from the elastic theory 

accordingly [14]. Besides, the standard XRDLPA methods 

based on the full width at half-maximum (FWHM), the 

integral breadths and the Fourier coefficients of the profiles 

can be employed to calculate the crystallite sizes [15]. In this 

study, XRDLPA was used to identify the structure change 

and compressive stresses distribution near the peened surface 

of 18CrNiMo7-6 steel after single/dual step SP. All SP 

treatments were performed by using the air blast machines. 

The related information of used SP process is demonstrated 

in Table II and Table III. X-ray diffraction data reveals the 

phase transformation from austenite to martensitic phase 

after SP treatments. The results show that dual step shot 

peening can more significantly improve the mechanical 

properties. Table IV has been shown the obtained value of 

experimental results on 18CrNiMo7-6 steel for different 

thirty samples.  

 

III. ARTIFICIAL NEURAL NETWORK 

Artificial intelligence systems such as artificial neural 

networks (ANNs) have found applications in many 

optimization and prediction problems in the last decade. 

ANNs are computational models inspired by an animal's 

c          v         m  i  p   ic           m  ’     i   

which is capable of machine learning as well as pattern 

recognition [16]. The neural units in the artificial neural 

network are developed as a very approximate model of the 

natural biological neurons [17]. Fig. 1 has shown an artificial 

neuron that is a computational and mathematical model of the 

biological neuron. 

 
Fig. 1. An artificial neuron. 

 They are usually presented as systems of interconnected 

neurons that can compute values from inputs by feeding 

information through the networks. In other words, ANNs 

have the ability to give an interpretation of relationships 

among the variables of high dimensional space. ANNs have 

shown remarkable performance when used to model complex 

linear and non-linear relationships. Fig. 2 represents a neural 

network. In this network, each input consists of R parameters 

and each output comprises S parameters, while p, w, b, f and a 

represent the inputs, weight matrixes, bias vectors, transfer 

function in neurons, and outputs, respectively. 

 
Fig. 2. One layer network, with R inputs and S neurons. 

 
Fig. 3. A Conceptual structure of network for an example to simulate the SP 

process effects. 

 

In this paper the four parameters of shot peening process 

effects including: residual stress, remnant austenite content, 

Cauchy breath, domain size and microhardness were 

modelled. Modelling which accomplished for residual stress 

is considered for two cases: martensite and austenite. 

Different networks with different structures were trained for 

determine each mentioned parameters. Distance from the 

surface (depth) and Almen intensity are regarded as inputs 

and martensite residual stress, austenite residual stress, 

remnant austenite content, Cauchy breath, domain size and 

microhardness are gathered as outputs of the network. Fig. 3 

for an example represents the conceptual structure of ANN 

for simulating the Almen intensity: four layers with full 

interconnection. Two input parameters are logged into input 

layer to determine the six outputs. 

After the neural network is trained successfully with four 

layers as it mentioned for an example, the values of the four 

parameters of the network (p, b, W and f) can be obtained. 

The function which correlates the inputs to the corresponding 

output can be calculated applying the aforementioned 

parameters. Finally, the model function can determined as 

below: 

G(g(1), g(2) … g(6)) = a 4 

                                                                                       (1)                                            

= f 4(w 4f 3 (w 3f 2(w 2f 1(w 1p+b 1)+ b 2) +b 3)+ b 4).  
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 where a1, a2

 

and a3 are outputs of the first, second and third 

layer, respectively; a4 is the fourth layer output which is 

 gets the values of two input parameters. Functions of

 g(1),…,g(6)

 

represent output parameters. 

There exist multifarious parameters in neural network 

implementation whose manipulation brings about a change in 

the performance, speed and accuracy of the network [18]. 

Number of network layers, number of neurons in each layer, 

network training rate, and many other factors are among 

those parameters. Another effective parameter of ANN is 

Pearson correlation coefficient (PCC) that shows the rate of 

accuracy in network and reveals how well a network is 

trained [19]. PCC determined as: 

TABLE

 

II:

 

SP

 

CONSTANT PARAMETERS

 

[10] 

Parameter

 

Type/ Value

 

Almen specimen

 

A type

 

Nozzle diameter

 

15 mm

 

Distance of nozzle and specimen

 

100 mm

 

     

             

             

 
TABLE III: MULTISTEP SP PARAMETERS [10] 

SP treatment type SP intensity  

 

(mmA) 

Shot material Shot diameter  

 

(mm) 

Shot hardness 

(HV) 

SP time  

 

(min) 

Coverage 

 

(%) 

Single step 0.15 Al2O3 ceramic 0.30 700 0.50 100 

Single step 0.50 Cast steel 0.60 610 0.50 100 

Dual step 0.50 + 0.3 Cast steel + Cast Steel 0.60 + 0.60 610 + 610 0.50 + 0.5 100 

 
TABLE IV: THE VALUES OF SP PROCESS PARAMETERS AND EFFECTS FOR THIRTY DIFFERENT SAMPLES [10] 

Sample 

No. 

Depth 

 

 

(μm) 

Shot 

Peening 

Intensity 

(mmA) 

Residual stress (MPa) remnant 

austenite 

content 

(%) 

Cauchy 

breath 

 

(   ) 

Domain 

size 

 

(nm) 

Microhardness  

 

 

(HV) 

martensite austenite 

1 0 0.15 -1277 -597 0.20 0.11 9.8 1149 

2 0 0.50 -732 -636 0.34 0.84 13.3 892 

3 0 0.5+0.3 -900 -658 0.11 0.87 12.8 917 

4 25 0.15 -1410 -905 8.41 0.73 13.9 735 

5 25 0.50 -1146 -741 3.46 0.74 15.2 741 

6 25 0.5+0.3 -1249 -785 3.00 0.77 14.5 781 

7 50 0.15 -469 -541 19.93 0.62 18.5 632 

8 50 0.50 -1245 -839 10.39 0.75 15.0 657 

9 50 0.5+0.3 -1283 -879 9.38 0.76 14.9 683 

10 75 0.15 -143 -293 21.54 0.46 25.0 606 

11 75 0.50 -1072 -810 14.28 0.70 16.1 628 

12 75 0.5+0.3 -1106 -833 13.47 0.74 15.1 643 

13 100 0.15 -85 -85 21.90 0.44 25.8 588 

14 100 0.50 -818 -721 16.72 0.61 18.5 608 

15 100 0.5+0.3 -879 -746 15.35 0.64 17.7 620 

16 125 0.15 -65 22 21.72 0.43 26.7 588 

17 125 0.50 -537 -635 18.87 0.55 21.1 595 

18 125 0.5+0.3 -564 -641 17.37 0.59 19.9 587 

19 150 0.15 -57 90 21.89 0.42 27.5 595 

20 150 0.50 -291 -508 21.72 0.48 23.7 586 

21 150 0.5+0.3 -291 -497 18.11 0.52 22.1 584 

22 200 0.15 -17 98 21.43 0.36 31.7 589 

23 200 0.50 -121 -208 20.94 0.46 24.9 584 

24 200 0.5+0.3 -86 -231 18.84 0.49 23.6 588 

25 250 0.15 -1 103 20.87 0.36 32.0 595 

26 250 0.50 -58 -68 20.85 0.45 25.4 589 

27 250 0.5+0.3 -70 -92 19.76 0.46 25.0 594 

28 300 0.15 3 106 20.36 0.36 32.2 585 

29 300 0.50 -38 13 20.82 0.44 25.8 592 

30 300 0.5+0.3 -50 8 20.40 0.45 25.9 585 
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equal to the function G(g(1),g(2) … g(6)). The function G

TABLE I: CHEMICAL COMPOSITION OF 18CRNIMO7-6 STEEL

Material C Si Mn Ni Cr Mo P S Al Cu Sn Fe

Weight % 0.170 0.190 0.560 1.520 1.650 0.320 0.006 0.003 0.028 0.020 0.002 Bal.



  

TABLE V: STRUCTURE AND RELATED PARAMETERS OF SELECTED NEURAL NETWORKS FOR EACH OUTPUT PARAMETERS 

Output parameter Rate of Training Layers Structure 

 

Training PCC Training Average   Error (%) 

Residual stress (martensite) 0.095 4×5×5×1 0.99785  0.9011 

Residual stress (austenite) 0.100 4×7×8×1 0.99821 1.0974 

Remnant austenite content  0.090 6×6×6×1 0.99830 0.7845 

Cauchy breath 0.095 6×7×7×1 0.99902 0.7008 

Domain size 0.105 6×6×7×1 0.99698 0.9732 

Hardness 0.110 4×8×8×1 0.99725 0.7944 

 

where PCC is shown by r  ∑ x     ∑ y are summation of the 

values for x and y  ∑ xy is the summation of the products of 

paired values of x and y, and N is shown the number of pairs 

of values for x and y. If obtained PCC is close to ±1, it means 

that the networks are tuned in a good way.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4. O   i    v         ANN’     p     (p   ic    v    ) i  c mp  i    

with experimental values for each fifteen testing samples for different 

considered output parameters, (a) martensite residual stress, (b) austenite 

residual stress, (c) remnant austenite content, (d) Cauchy breath, (e) domain 

size and (f) microhardness. 

 

All the input and output data was normalized between 0 

and 1. Back propagation (BP) error algorithm has been used 

for ANN training in this paper. The Back Propagation 

algorithm defines a systematic way to update the synaptic 

weights of multi-layer feed forward supervised networks 

composed of an input layer that receives the input values, an 

output layer, which calculates the neural network output, and 

one or more intermediary layers, so called hidden layers. 

In this study, several networks have been trained with 

different structures to find the optimum performance of ANN, 

to predict the considered output parameters with the highest 

PCC and least errors. The ANN average error in this work is 

calculated as follows: 

 100
1

1 ,

,,



 



q

i iEXP

iEXPiANN

ANN
f

ff

q
e              (3) 

where q is the number of used sample for modeling, fANN is 

       w  k’  p   ic    v         fEXP is the experimental 

value. 
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IV. RESULTS AND DISCUSSION 

In present study the obtained experimental tests results on 

18CrNiMo7-6 steel have been used to networks training. The 

networks were trained to achieve the optimum structure (OS) 

in order to generate a model function (MF). Afterward by use 

of achieved OS and MF, operation of the network was tested. 

15 samples data (data of samples 16-30) were used from the 

total of 30, as data sets to train network, while in the network 

testing, 15 different ones (data of samples 1-15) which were 

not used during training are used as network testing. Since 

the whole experimental results did not consist in the training. 

For investigative purposes, 50% training data sets against 

50% test data sets were considered. To decrease the average 

error and increase the accuracy of the predicted results, 

separate different networks were trained for each considered 

output parameters.    

 

 
Fig. 5. Values of obtained error for each fifteen samples in accomplished 

different modellings. 

 
TABLE VI: ACHIEVED VALUES OF PCC AND THE AVERAGE ERROR FOR 

NETWORKS TESTING 

Output parameter Testing PCC Testing Average 

Error (%) 

Residual stress (martensite) 0.99531 0.9202 

Residual stress (austenite) 0.99144 1.2373 

Remnant austenite content  0.99807 0.8566 

Cauchy breath 0.99883 0.7709 

Domain size 0.99216 1.0156 

Hardness 0.99299 0.8783 

 

As it is mentioned several network has been trained with 

different structures to find the OS of ANN, to predict the 

considered parameters with the least average error possible. 

Results of the networks were investigated and the networks 

with best operation are selected. The relevant information of 

network structure and some related results for selected 

networks have been shown in Table V for each output 

parameters. It is observed that the values of PCC which show 

the accuracy, are more than 99.6 % and the obtained average 

errors are less than 1.1 % and they both acceptable for each 

output parameters; so it is concluded that network s are train 

in well. In order to test the performance of ANN, selected 

networks were employed to networks testing. Fig. 4 have 

been illustrated the predicted values of each output 

parameters by use of the obtained MF and OS in comparison 

with the experimental values. Percentage of error values for 

each fifteen experiments at the whole considered output 

parameters are shown in Fig. 5 respectively. The achieved 

values of PCC and the average error for testing samples by 

use of the selected trained networks have been shown in 

Table VI. As it can be observed the obtained values of PCC 

from testing in comparison with training are decreased and 

the achieved average error values from testing in comparison 

with training are increased. T   P  ’  v          m         

99.8 % for remnant austenite content and Cauchy breath, 

more than 99.5 %, 99.2 % and 99.1 % for martensite residual 

stress, microhardness, domain size and austenite residual 

stress respectively. Furthermore obtained average errors are 

in small range (0.7709-1.2373) and the predicted values for 

Cauchy breath, remnant austenite content, microhardness, 

martensite residual stress, domain size and austenite residual 

stress have the least average error respectively. According to 

the obtained results it is observed that predicted values form 

the response of ANN and the experimental values are in 

admirable agreement. So it can be concluded that the ANNs 

are tuned finely to predict the FSW effective parameters and 

the ANNs can be used to prediction and optimization of this 

process parameters. 
 

V. CONCLUSION 

In present study the artificial neural networks were 

employed to predict single and dual step shot peening effects 

on mechanical and metallurgical properties of 18CrNiMo7-6 

Steel. Six parameters of step SP process effects including: 

martensite residual stress, austenite residual stress, remnant 

austenite content, Cauchy breath, domain size and 

microhardness were modeled and the predicted obtained 

values of error are 0.9202, 1.2373, 0.8566, 0.7709, 1.0156 

and 0.8783 for each mentioned parameter respectively. Also 

the values of PCC for all of the parameters are more than 99%. 

According to the achieved results it can be concluded that 

when the artificial neural networks are tuned finely and 

adjust carefully the modeling results are in admissible 

agreement with the experimental results. Therefore using 

ANNs instead of costly tests decreases costs and the need for 

special testing facilities and the ANNs can be employed to 

optimize and predict the step SP process effects. 
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