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Abstract—Existing theories of snow slab failure postulate that 

failure initiates with the propagation of an interfacial defect 

located between snow layers with similar mechanical properties. 

In this paper, we develop a simplified model for failure initiation 

when there is a strong mismatch in material properties of the 

bounding snow layers. The crack problem is formulated in terms 

of the distributed dislocation technique and the governing 

integral equations are solved using the Gauss-Chebyshev 

quadrature method. We obtain theoretical dependence of the 

mode II stress intensity factor upon the mismatch in material 

properties, slope angle and snow layer thickness. 

 

Index Terms—Crack closure, distributed dislocation 

technique, interfacial crack, snow slab avalanche.  

 

I. INTRODUCTION 

Snow avalanches down mountain slopes either gradually 

(loose snow avalanche) or catastrophically (snow slab 

avalanche). Loose snow avalanches are analogous to the 

rotational slip of cohesion-less sand and typically occur at 

mountain slopes exceeding 45⁰, preventing the accumulation 

of excessive snow at these relatively steep slopes. Slab 

avalanches on the other hand, occur at moderately steep 

slopes in the range of 30⁰-45⁰ and release a large volume of 

cohesive snow (the slab) at once [1], [2]. Dry snow slab 

avalanches are a major hazard, endangering residents and 

infrastructure when triggered naturally or recreationists in the 

case of human triggered events.  

It is well established that a dry snow slab avalanche is the 

result of shear failure along a weak layer or interface 

underlying the snowpack or slab followed by the tensile 

failure at the top of the slab (crown) and compressive failure 

at the bottom of the slab (staunchwall) [1]-[3] (Fig. 1). 

Several mechanical models have been presented in the past to 

predict avalanche release conditions [4]-[9]. These models 

invariably consider the situation where the slip surface is 

situated between two layers of snow with similar material 

properties.  

In this paper, we consider the scenario when there is 

significant mismatch in material properties of the bounding 

layers. Such a situation may arise when the preexisting defect 

lies between the snow layer and the rocky substratum, or 

between two snow layers with different microstructures. The 

defect is modeled as an interfacial crack between a layer and a 

half plane. The layer represents the overlying snow slab and 

the half plane represents the underlying slope. The crack is 
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modeled using the distributed dislocation technique [10], [11], 

and the effect of slab thickness and crack closure are 

incorporated are incorporated into the governing singular 

integral equations using the method described in [12]-[16]. 

The governing equations are solved numerically using the 

Gauss-Chebyshev quadrature [17]-[20] and the dependence 

of the energy release rate on material mismatch, slope angle 

and snow layer thickness is obtained. 
 

 
Fig. 1. Slab avalanche nomenclature [21]. 

 

II. PROBLEM FORMULATION 

The crack problem posed is illustrated in Fig. 2. The layer, 

of thickness t , is perfectly bonded to the substrate 

everywhere except for the location of the crack of length 2L . 

The x -axis is taken to be the layer-substrate interface. In the 

absence of the interfacial crack, the snow loading produces 

uniform normal and shear tractions along the location of the 

interfacial crack, given by 

 
2( ) cos ,T x T gt                             (1) 

 

( ) sin cos ,Q x Q gt                             (2) 

 

respectively. In Eqs. (1)-(2),   is the density of the snow slab, 

g  is the acceleration due to gravity, t is the thickness of the 

snow slab and   is the slope angle. 

 

 
Fig. 2. 2D slab release model showing an interfacial crack between the slab 

layer and the substratum. 
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The crack will be partially closed and at least two contact 

zones develop in the vicinity of the crack tips, as discussed 

previously. The two contact zones occupy the interval 

( , )L a   and ( , )b L , while ( , )a b  is the interval over which 

an open zone or gap exists between the layer and substrate. 

The opening and tangential shift along the crack can be 

defined as 

 

( ) ( ,0 ) ( ,0 ),y yg x u x u x                           (3) 

 

( ) ( ,0 ) ( ,0 ),x xh x u x u x                               (4) 

 

respectively. The gap can be modeled by a distribution of 

climb dislocations with density ( )yB x , and the tangential 

shift by a distribution of glide dislocations with density ( )xB x , 

so that 

 

( ) , ( ) .y x

dg dh
B x B x

dx dx
                          (5) 

 

Note that ( )yB x  is defined over the interval ( , )a b  and 

( )xB x  is defined over the interval ( , )L L  and they are zero 

everywhere else. The governing integral equations for the 

interfacial crack can be written as [11]-[14]. 
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where C is the effective bimaterial modulus defined as 
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In terms of Dundur’s parameters   and  , 
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The elastic constants L , L correspond to the layer and 

S , S  correspond to the substratum. The kernels ( , )ijkK x   

are regular bounded functions describing the influence of the 

layered structure, and can be obtained from [12]. In addition, 

the following uniqueness conditions must be imposed 

( ) ,

b
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                                       (10) 

( ) .
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The singular integral Eqs. (6) and (7), along with Eqs. (10)

-(11) are sufficient to obtain the solution for ( )xB x  and 

( )yB x  as well as the unknown constants a  and b .  

 

III. NUMERICAL RESULTS 

Here, we investigate the effect of slope angle and the snow 

layer thickness on various physical quantities of interest. We 

take shear modulus of snow, 0.42L   MPa, Kolosov’s 

constant for snow, 2.2L   and Dundur’s parameters 

1    and 0.5   , which corresponds to the case of a 

rigid substratum. The method of obtaining the solution for the 

coupled system of governing integral equations is described 

in [11], [14]-[20] and is omitted here. Recalling that one 

contact zone is expected to be infinitesimal, 7(10 )L  and 

the other large in extent, ( )L , we fix 0Q  . This has the 

effect that the large contact zone always appears at the right 

tip [11], [14] and the discretization procedure is simplified 

without loss of generality. To further simplify the numerical 

procedure, we interchange the roles of b L  and T Q . Thus, 

we treat b L  as known (specified) and derive the value of 

T Q  as a part of the solution. 
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Fig. 3. (a) Validation of the present solution (b) Dependence of the crack 

opening interval on the slope and normalized layer thickness. 

 

In Fig. 3(a), we compare the obtained dependence of T Q  

upon b L  to previously obtained results. Both sets of results 

demonstrate that the layer thickness, h L  has little effect on 

the obtained dependence over the interval [0.5, )h L  . 
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The dependence of T Q  on h L  obtained in [22] for 

h L   is out of line with the present results and results 

provided in [14]. This discrepancy could be attributed to the 

numerical solution procedure utilized in [22]. Overall, the 

present numerical results are in fair agreement with 

previously obtained results, serving as a validation of the 

present approach.  

Fig. 3(b) shows the dependence of the crack opening 

interval upon the slope angle. The slope angle can be obtained 

from Eqs. (1)-(2) as 1cot ( )T Q   and the length of the 

opened region of the crack can be obtained as ( )b a  from 

Fig. 2. It is found that under shear and compressive loading 

which would prevail at typical slope angles (30
0
-45

0
), the 

crack would primarily remain closed, with a very small 

opened zone. The length of the opened zone is expected to 

increase with increasing slope and increasing crack length 

(for a given layer thickness). The large contact zone also 

implies that the effect of friction must be incorporated in the 

accurate analysis of the problem under consideration. 
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Fig. 3. Dependence of the normalized Mode II SIF on (a) slope angle and (b) 

normalized layer thickness. 

 

The mode II stress intensity factor (SIF) for an interfacial 

crack with contact zones is defined by [22], [23] as 

 
1 2 2 1 2

1
( ) lim{(1 ) ( )},II x

s
K L CL s B s


                    (12) 

 

and the strain energy release rate can be related to the mode II 

SIF according to [23] 
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Fig. 4(a) shows the dependence of the normalized Mode II 

stress intensity factor at the right crack tip, ( )x L   upon the 

slope angle for various values of the normalized layer 

thickness, h L . It is observed for all values of the ratio h L , 

the parameter 1 2

IIK QL  is rather insensitive to variation in 

the slope angle  , within the range considered. At these 

angles, the crack is mostly closed (Fig. 3(b) ). 

Taking advantage of the weak dependence of the 

normalized Mode II SIF on the slope angle, the value of b L  

was fixed at 0.8 for further calculations. Decreasing layer 

thickness implies that the interfacial crack experiences 

increased stress concentration due to the presence of a free 

surface at y h . Hence, the normalized Mode II SIF 

increases in magnitude with decreasing normalized layer 

thickness, as shown in Fig. 4(b). 

 

IV. CONCLUSION 

A mathematical model is presented for an interfacial crack 

present between a snow layer and a rigid substratum. It is 

shown that under the combined shear and compressive 

loading, the interfacial crack remains mostly closed which 

suggests that effects of friction need to be incorporated in 

more sophisticated future models. The dependence of the 

mode II stress intensity factor upon the slope angle and layer 

thickness is also presented. Although the problem has not 

been exhausted and a complete parametric study was not 

undertaken, it is hoped that its salient features have been 

sufficiently presented. 
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