
  

  
Abstract—A numerical study of the conjugate natural 

convection heat transfer in a vertical cylindrical cavity having a 
vertical porous layer has been carried out. The vertical cylinder 
has a heat-conducting solid shell of finite thickness and 
conductivity. Convective heat exchange with an environment is 
modeled at the top and side walls while the bottom wall is 
adiabatic. The mathematical model has been formulated in 
dimensionless stream function, vorticity and temperature 
taking into account the Darcy-Boussinesq approximation for 
the porous layer. The boundary-value problem has been solved 
numerically on the basis of a second-order accurate finite 
difference method. Efforts have been focused on the effects of 
three types of influential factors such as the porous layer 
thickness, Biot number and dimensionless time on the fluid flow 
and heat transfer parameters. It has been found that an 
increase in the Biot number leads to an essential intensification 
of convective heat transfer at initial time level. 
 

Index Terms—Free convection, vertical cylinder, 
heat-conducting solid shell, Darcy porous layer. 
 

I. INTRODUCTION 
Free convection in porous enclosures has received 

considerable attention in recent years because of its relation 
to the thermal performance of many engineering installations 
[1]-[5]. Natural convection heat transfer in domains 
containing pure fluid and porous medium is a fundamental 
transport mechanism encountered in a wide range of 
engineering, geophysics, and scientific applications, such as 
packed bed solar energy storage, fibrous and granular 
insulation systems, water reservoirs, post-accident cooling of 
nuclear reactors, etc. [1]-[5]. 

Laminar natural convection in partially porous enclosures 
has been investigated numerically and experimentally [1]-[9]. 
Singh and Thorpe [6] have numerically analyzed the Darcy, 
Brinkman and Brinkman-Forchheimer models of natural 
convection in a differentially heated square enclosure 
containing simultaneously a pure fluid and a horizontal 
porous layer. It has been found that for moderate to small 
Darcy numbers the results obtained on the basis of the Darcy 
model with the Beavers-Joseph empirical condition at the 
fluid-porous interface are similar to the results obtained by 
the Brinkman and Brinkman-Forchheimer models. Sheremet 
and Trifonova [7], [8] have numerically studied the Darcy 
and Brinkman models of conjugate natural convection in a 
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vertical cylinder containing horizontal pure fluid and porous 
layers. It has been shown that at small values of the thermal 
conductivity ratio the linear Darcy model is valid for the 
conjugate natural convection problems. An increase in the 
thermal conductivity ratio leads to more essential quantitative 
differences between the results obtained on the basis of the 
Darcy and Brinkman-extended Darcy models. Liu et al. [9] 
have experimentally investigated free convection in a 
two-dimensional cavity partially filled with a vertical porous 
layer. It was found that the value of average slip coefficient 
would vary from 0.307 to 2.53 for the range of Rayleigh 
number from 2.806×104 to 1.053×106. Mharzi et al. [10] 
have numerically analyzed laminar thermosolutal natural 
convection inside a square cavity containing simultaneously 
a binary fluid and a saturated vertical porous layer. It has 
been found that the thermal and solutal exchange are 
sensitive to the Rayleigh and Darcy numbers, so the increase 
in Ra leads to an intensification of convective heat transfer 
inside the fluid layer while the convection heat transfer inside 
the porous layer is enhanced with the increase in the Darcy 
number. Singh et al. [11] have analyzed the transient natural 
convection in a vertical channel partially filled with a porous 
medium. The authors have used Forchheimer-Brinkman 
extended Darcy model for simulation of the momentum 
transfer within the porous medium. Using the perturbation 
technique the authors have shown that the increase in the 
fluid region size leads to the increase in the porous region 
velocity. It has been found also that the velocity is more 
sensitive for higher values of thermal conductivity ratio in 
comparison to lower values of thermal conductivity ratio in 
fluid region. Lai and Kulacki [12] have studied steady-state 
free convection in a differentially heated square cavity filled 
with a two-layer porous system using the Darcy-Boussinesq 
approximation. It should be noted that the authors have used 
special boundary conditions at porous-porous interface [13], 
[14]. The authors have found that the heat transfer begins as a 
conduction heat transfer in the less permeable sublayer and as 
a thermal convection in the layer with higher permeability. At 
the same time convective heat transfer in the layer of higher 
permeability begins to penetrate into the less permeable layer 
with an increase in the Rayleigh number. Double diffusive 
natural convection in a vertical cavity containing a layer of a 
binary fluid and a porous layer has been studied by Gobin et 
al. [15]. The authors have used the macroscopic conservation 
equations with both Darcy–Brinkman model in the porous 
layer and Navier–Stokes model in the binary fluid layer. 
Using the standard finite volume procedure the authors have 
found that the presence of the porous layer has a strong 
influence on the heat and mass transfer. Baytas et al. [16] 
have investigated double diffusive natural convection 
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between a saturated porous layer and an overlying fluid layer 
in a square cavity using Forchheimer–Brinkman extended 
Darcy model for simulation of the momentum transfer within 
the porous medium. It has been found that if the fluid-porous 
interface is not horizontal and contains a step change in 
height, the convective heat and mass transfer is changed 
essentially. Bagchi and Kulacki [17] using 
Forchheimer–Brinkman extended Darcy model have 
analyzed natural convection in a fluid-superposed porous 
layer heated locally from below. It has been found that the 
average heat transfer coefficient over the heat source surface 
increases with a decrease in the heat source length and 
decreases with a decrease in the Darcy number. Further on 
Bagchi and Kulacki [18] experimentally have analyzed the 
above-mentioned problem. Experiments have been carried 
out for a glass-water system. The obtained results have 
shown a formation of a plume-like flow with a single pair of 
circulating cells and convective motion inside the porous 
layer. Arpino et al. [19] numerically have analyzed axial flow 
convection in cylindrical domains completely or partially 
filled with a fluid saturated porous medium. The authors have 
proposed a stable and effective axisymmetric Artificial 
Compressibility Characteristic Based Split scheme for the 
considered physical problem. Merrikh and Mohamad [20] 
have studied natural convection in a square cavity filled with 
two vertical layers of porous medium using the Marker and 
Cell technique for incompressible flow [21]. It has been 
found that there is an essential difference between linear 
Darcy model and the general model predictions and in 
several cases it is necessary to use no-slip boundary 
conditions both at the cavity walls and at the interface 
between the porous media. 

From the above literature survey it is evident that 
conjugate natural convection within cavity containing 
vertical fluid layer and porous layer in conditions of 
convective heat exchange with an environment has not been 
studied in detail. The main objective of the present study is to 
numerically analyze the unsteady natural convection in a 
vertical cylindrical cavity partially filled with a porous 
medium having heat conducting solid walls. To our best of 
knowledge this problem has not been considered before, so 
that the reported results are new and original. 

 

II. GOVERNING EQUATIONS AND NUMERICAL METHOD 
The domain of interest consists of a central vertical pure 

fluid layer and vertical porous medium layer of thickness d 
located close to the walls in a vertical cylindrical cavity of 
height D and radius L bounded by solid heat-conducting shell 
of finite thickness l is shown in Fig. 1. 

The direction of gravity is along the cylinder axis (z-axis) 
while the r-axis is taken in the radial direction. The 
fluid-porous interface is assumed to be permeable so that the 
fluid can penetrate into the porous layer. The external surface 
of the bottom wall (z = 0) is considered to be adiabatic. The 
convective heat exchange with an environment is modeled on 
other borders like r = L+l and z = D+2l. The ambient 
temperature eT  is assumed to be constant and less than an 
initial temperature 0T  of the domain of interest. Therefore 

during this investigation it is possible to analyze an effect of 
porous medium on the heat insulation of the domain of 
interest. All internal surfaces of the solid shell are assumed to 
be impermeable. For limiting the number of independent 
parameters, all physical properties of the fluid are supposed 
constant with temperature except for the density in the 
buoyancy term in the momentum equations where the 
Boussinesq approximation is valid. The porous medium 
using the Darcy’s law is considered homogeneous and 
isotropic and is saturated with a fluid which is in local 
thermodynamic equilibrium with the solid matrix. In addition, 
the flow and heat transfer are transient, laminar and 
two-dimensional. 

 
Fig. 1. Physical model and coordinate system (1-solid walls; 2-pure fluid 

layer; 3-porous medium layer). 

The governing conservation equations for the fluid and 
porous layers and also for the solid shell have been 
formulated in dimensionless form using stream function, 
vorticity and temperature variables [7], [8]: 
 for the pure fluid layer: 
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 for the porous medium layer: 
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 for the heat-conducting solid shell: 
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Here R, Z are the dimensionless cylindrical coordinates; Ψ 
is the dimensionless stream function; Ω is the dimensionless 
vorticity; Θ is the dimensionless temperature; τ is the 
dimensionless time; U, V are the dimensionless velocity 
component in R- and Z-direction, respectively; Ra is the 
Rayleigh number; Pr is the Prandtl number; Da is the Darcy 
number; ,i j i jα = αα   is the thermal diffusivity ratio. 

The boundary conditions for the governing equations 
Eq. 1–Eq. 6 are as follows [7], [8]: 

• at R = 1+l/L and Z = D/L+2l/L the conditions 
considering convective heat exchange with an 
environment are realized Bi ;n∂Θ ∂ = − Θ  

• adiabatic condition is set on the boundary Z = 0 
0;Z∂Θ ∂ =  

• at axis of symmetry R = 0: 0;RΨ = Ω = ∂Θ ∂ =  
• at internal solid-porous interface R = 1 and 

l/L < Z < l/L + D/L: 
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• at internal solid-fluid interfaces Z = l/L and Z = D/L+l/L 
for 0 < R < 1 – d/L: 
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• at internal solid-porous interfaces Z = l/L and 
Z = D/L+l/L for 1 – d/L < R < 1: 
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• at internal fluid-porous interface R = 1 – d/L: 
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Here Bi is the Biot number; k is the coefficient in the 
Beavers-Joseph condition; ,i j i jk k k=  is the thermal 
conductivity ratio. 

The considered conditions at internal fluid-porous 
interface for the stream function are the conditions of 
Beavers and Joseph [22]. Neale and Nader [23] presented an 
analysis for the flow in a channel having fluid and porous 
zones and found that the Darcy model with such conditions 
gives the same results as that obtained by using the Brinkman 
model by considering continuity of the velocity and shear 
stress at the fluid-porous interface. In the initial time point we 
used the following conditions ( ), ,0 0,R ZΨ =  

( ), ,0 0,R ZΩ =  ( ), ,0 1.0R ZΘ = . Therefore we can analyze 
an effect of the ambient cooling on the porous layer system 
bounded by solid walls of finite thickness and conductivity. 

The partial differential equations Eq. 1-Eq. 6 with 
corresponding initial and boundary conditions were solved 
by finite difference method [7], [8], [24], [25] using the 
uniform grid. For an approximation of the convective terms 
we used the monotonic Samarskii scheme of the second order, 

allowing considering a sign of velocity and for an 
approximation of the diffusion terms we used the central 
differences. The parabolic equations were solved on the basis 
of Samarskii locally one-dimensional scheme. The 
discretised equations were solved by Thomas algorithm. The 
equations for the stream function (Eq. 1 and Eq. 4) were 
discretised by means of five-point difference scheme on the 
basis of central differences for the second derivatives. The 
obtained difference equations were solved by the successive 
over relaxation method. Optimum value of the relaxation 
parameter was chosen on the basis of computing 
experiments. 

 

 
Fig. 2. Comparison of streamlines Ψ and isotherms Θ at Da = 10–5, Ra = 105: 

numerical results of Singh and Thorpe [6] (a), present study (b). 
 

 
Fig. 3. Comparison of streamlines Ψ and isotherms Θ at Da = 10–5, Ra = 106: 

numerical results of Singh and Thorpe [6] (a), present study (b). 

The accuracy of the numerical code developed by the 
author was checked by preparing the benchmark solutions 
both for non-conjugate and conjugate natural convection in 
porous and pure media [7], [8]. In the case of non-conjugate 
problem we have analyzed laminar natural convection in a 
square cavity containing a fluid layer overlying a porous 
layer saturated with the same fluid [6]. Fig. 2 and Fig. 3 show 
a good agreement between the obtained streamlines and 
isotherms at different Rayleigh numbers and the results by 
[6]. Results on the basis of Brinkman model is (-----) and on 
the basis of Darcy model is (-----) in Fig. 2(a) and Fig. 3(a). 
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III. RESULTS AND DISCUSSION 
Numerical investigation of the boundary value problem 

has been carried out at following values of dimensionless 
complexes: Ra = 106; Da = 10–5; Pr = 0.71; D/L = 1; l/L = 0.1; 
k1,3 = 20; 1 ≤ Bi ≤ 10; 0 < d/L < 1; 0 ≤ τ ≤ 1000. 

Particular efforts have been focused on the effects of three 
types of influential factors such as the Biot number, the 
thickness of the porous layer, and the dimensionless time on 
the fluid flow and heat transfer. 

Fig. 4 presents streamlines and isotherms at Bi = 1, 
τ = 1000 and different values of the porous medium layer 
thickness. 

 

 
Fig. 4. Streamlines Ψ and isotherms Θ at Bi = 1, τ = 1000: d/L = 0.25 – а, 

d/L = 0.5 – b, d/L = 0.75 – c. 
 
It should be noted that the considered problem is essentially 

transient due to an effect of convective cooling of the domain 
of interest from outside. Therefore stream function and 
temperature fields are presented at the end of the cooling 
process at τ = 1000 (Fig. 5). Regardless of the porous 
medium layer thickness a toroidal vortex is formed in the 
cavity with convective core inside the pure fluid layer close 
to the internal fluid–porous interface owing to a difference 
between an initial temperature in the cavity and an ambient 
temperature in conditions of a convective cooling from the 
lateral surface and the top of cylindrical cavity. An increase 
in the porous medium layer thickness leads on the one hand 
to the displacement of the convective core to the cylindrical 
symmetry line due to reduction of the pure fluid layer 
thickness and on the other hand to weak drift of this core 
along the vertical direction. It is worth noting here that in the 
porous layer the heat conduction is a dominated heat transfer 
mechanism. Therefore an increase in the porous medium 
layer thickness also leads to an attenuation of the natural 
convective heat transfer. Thicker porous layer allows 
increasing essentially the cooling time for the internal cavity. 

Effects of the dimensionless time, porous layer thickness 
and Biot number on the average Nusselt number 

1
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1
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l L

R d Ll L

dZ
R

+

= −

∂Θ
=

∂∫  are presented in Fig. 5. It should be 

noted that the average Nusselt number is a non-monotonic 
time function owing to cooling of the domain of interest with 
variation of the temperature differences inside the cavity. The 
latter characterizes an evolution in time of the convective 

flow intensity. An increase in d/L leads an increment in 
avgNu  at τ > 600. In case of τ < 600 the dependence of 

( )avgNu f d L=  is essentially non-monotonic. Effect of the 
Biot number that defines the convective cooling intensity is 
presented in Fig. 5b. An increase in Bi leads to both a 
significant increase in the maximum value of avgNu  and an 
intensive reduction of the average Nusselt number with 
dimensionless time. 

 

 
Fig. 5. Variation of the average Nusselt number at the side solid-porous 

interface versus the dimensionless time and porous layer thickness (a) and 
the dimensionless time and Biot number (b). 

 

IV. CONCLUSION 
Numerical simulation of transient conjugate free 

convection in a vertical cylindrical cavity partially filled with 
a porous medium in conditions of convective cooling from an 
environment has been carried out. Distributions of 
streamlines and isotherms in a wide range of key parameters 
have been obtained. It has been found that an increase in the 
porous layer thickness leads to an essential reduction of the 
cooling intensity. It has been shown also that an increment in 
Bi leads to both a significant increase in the maximum value 
of the average Nusselt number at internal porous–solid 
interface and an intensive reduction of this integral parameter 
with dimensionless time. 
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