
  

 

Abstract—This work is a numerical simulation of the 3D 

forced and mixed convection heat transfer of Al2O3water 

nanofluid flow through an annular pipe. The interest of this 

research is in enhancing heat transfer by using a nanofluid 

instead a usual fluid without solid particles. The external pipe is 

uniformly heated while the inner cylinder is insulated. Based on 

the single approach, the conservation equations are solved by a 

second order precision finite volume method. Extensive results 

are obtained for different values of the Reynolds (5002000) 

and Grashof (0, 104, 105) numbers and the nanoparticle 

concentration (1, 4, 8%). Our results show that the mixed 

convection Nusselt number becomes more superior to that of 

the forced convection when the Grashof number is increased. 

Furthermore, when the Reynolds number is fixed, the 

temperatures undergo a circumstantial variation under the 

influence of the Grashof number with significant azimuthally 

variation. Also, for the same concentration of nanoparticles, 

temperatures within the nanofluid are strongly influenced by 

the Reynolds number. They decrease with increasing Reynolds 

number. 

 
Index Terms—Nanofluid, convection heat transfer, annular 

duct, numerical prediction. 

 

I. INTRODUCTION 

Enhancement of the thermal characteristic of liquid has 

been achieved by adding micrometer particles to a base fluid, 

Maxwell [1]. These micron-sized particles cause some 

problems such as erosion, clogging, rapid sedimentation, and 

high-pressure drop, all these problems have been solved by 

using solid nano particles dispersed uniformly and suspended 

stably in conventional liquids. This fluid was termed a 

“nanofluid” by Choi [2] in 1995 to characterize the new class 

of fluids with superior thermal properties to prevalent base 

fluids. Nanoparticles used in nanofluids have been made of 

various materials, such as oxide ceramics (Al2O3, CuO), 

carbide ceramics (SiC, TiC), metals (Cu, Ag, Au), 

semiconductors (TiO2, SiC), and carbon nanotubes. Also, 

many types of liquids, such as water, ethylene glycol (EG), 

and oil, have been used as base liquids in nanofluids. The 

volumetric fraction of the nanoparticles is usually below 5 % 

with respect which can provide effective improvements in the 

thermal conductivity and convective heat transfer of base 

fluids. Roy et al. [3] investigated numerical study of laminar 

flow heat transfer for (Al2O3EG) and (Al2O3water) and 
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reported an improvement in heat transfer rate. Also they 

showed that wall shear stress increases with increasing 

nanoparticles concentration and Reynolds number. Despite 

the fact that nanofluid is a two phase mixture, since the solid 

particles are very small size they are easily fluidized and can 

be approximately considered to behave as a fluid Xuan et al. 

[4]. Therefore, considering the ultrafine          and low 

volume fraction of the solid particles, it might be reasonable 

to treat nanofluid as single phase flow in certain conditions, 

Yang et al. [5]. As this approach is simpler to use several 

theoretical studies were done based on this approach [6]. 

Mixed convection heat transfer in tubes appears in many 

industries such as heat exchangers and solar energy collectors 

and several works have been developed for the nanofluid 

behaviours, Behzadmehr et al. [7]. Also, the annuluses are a 

common and important geometry for thermofluid device 

enhancement. We can cite, among others, the works of 

Moghari et al. [8] who studied laminar mixed convection in 

horizontal annulus with constant heat flux at the inner and 

outer walls and Izadi et al. [9] who investigated 2D laminar 

forced convection of a nanofluid consisting of (Al2O3water) 

numerically in a annulus with single phase approach.  

In this study, we treat the single phase fluid model in the 

annulus geometry by highlighting the influence of parameters 

related to the convection modes and concentration of solid 

particles. 

 
TABLE I: THERMOPHYSICAL PROPERTIES 

Physical quantity 
Fluid phase  Alumina  

water Al2O3 

       2  8.91 10-4 - 

Cp (J/kgK) 4179 765 

          997.1 3970 

         0.613 40 

        21 10-5 0.85 10-5 

    n   0.384 47 

 

II. THE GEOMETRY AND MATHEMATICAL MODEL  

The problem of study is 3D steady, laminar forced and 

mixed convection of a nanofluid flow (Al2O3water) in a 

long horizontal annular pipe of length L formed by two 

concentric cylinders, inner radius Ri and outer radius Ro. The 

outer cylinder is heated by an imposed uniform heat flux 

while the inner cylinder is adiabatic. Fig. 1 shows one half of 

the geometry of the considered problem. The nanofluid with 

single-phase approach is presented at the entrance by a 

constant velocity V0 and a constant temperature, T0. 

Dissipation and pressure work are neglected in order to be 

able using single-phase approach. It is assumed that the fluid 
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phase and solid nanoparticles are in thermal equilibrium with 

zero relative velocity, [10]. So, single phase fluid procedure 

can be applied and the Boussinesq approximation is adopted. 

Table I presents thermophysical properties of base fluid and 

solid nanoparticles. Some simplifying suppositions are 

imposed, [11]: incompressible flow, no chemical reactions, 

dilute mixture (1) and negligible radiative heat transfer. 
 

 
Fig. 1. The physical model and the correspondent geometry. 

 

The physical principles involved in this problem are well 

modeled by the following non-dimensional conservation 

partial differential equation of mass, momentum and energy 

with their appropriate boundary conditions: 
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The physical and thermal nanofluid properties are 

calculated using different appropriate formulae available in 

the literature. The density    , the heat capacity         and 

the thermal expansion coefficient         : 

                                          (4) 

                                           (5) 

                                          (6) 

The nanofluid thermal conductivity is calculated from the 

Hamilton Crosser equation [12]:  

     
                        

                   
                     (7) 

(for the spherical particles: n=3) 

The Brinkman model [13] is used for the evaluation of the 

nanofluid viscosity:   

     
  

                                          (8) 

In all these relationships,   are the volume fraction and the 

subscripts f and s are associated with fluid and solid 

nanoparticles successively.  

This set of nonlinear governing equations has been solved 

subject to following boundary conditions: 

At the inlet of the duct:           

  
       

  and         : 

                                               

At the outlet of the duct :           

 

  
       

  ;         : 
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(The duct length L is 200 time of the hydraulic diameter Dh 

to insure that the fully developed condition is reached at the 

outlet) 

At the outer wall of the inner cylinder:      
      

        and                          and 

     
   

    
     

 
                                   (11) 

At the outer wall of the outer cylinder:      
    

       and                             and  

    

    
     

 
 

  

   
                              (12)  

Along the angular direction, the periodic conditions are 

imposed.  

The heat transfer is notified by the Nusselt number, which 

reflects the relative ration of convective to conductive heat 

transfer. Since the surface of the inner cylinder is adiabatic, 

the Nusselt number will be reported to the outer surface of the 

outer cylinder. 

At steady state, the local Nusselt number depending on 

angular and axial position is expressed by the following 

equation: 
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where the dimensionless bulk  fluid temperature is: 
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The local axial mean peripheral Nu number is: 

         
 

  
           

  

 
                         (15) 

and the average Nu for the whole interface is :        

   
 

   
             

 
                            (16) 

 

III. NUMERICAL RESOLUTION 

This set of coupled non-linear differential equations was 

discretized by the finite volume method, Patankar [14]. The 

temporal discretization of the derivation terms follows the 

backward Euler scheme whereas the convective and the 

non-linear terms follow the Adams-Bashfort scheme whose 

the truncation error is of     
. The spatial disretization of the 

diffusive terms and the pressure gradient follows the fully 

implicit central difference scheme. The systems of the 

linearized algebraic equation obtained are solved by the 

SIMPLER algorithm. With step time of         , the time 

marching is continued until the steady state is reached. The 

convergence is confirmed by the satisfaction of the global 

mass and energy balances. In the   ,  ,    directions, tests on 
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the influence of the mesh allowed to retain the following 

mesh           successively. A validation concerning 

the forced convection is verified by the comparison of our 

results with those of Nazrul and al. [15]. The results concern 

the axial Nusselt number at the interface of the external 

cylinder and the fluid for the forced convection case. The 

comparison shows a good agreement in Fig. 2. The numerical 

code used, is a transformation of the code developed in the 

first step by Boufendi and Afrid [16] and in the second step 

by Touahri and Boufendi [17][19]. 
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Fig. 2. Axial evolution of the circumferentially mean axial Nusselt number; 

A comparison with the results of [15]. 

 

IV. RESULTS AND DISCUSSION 

The results are obtained for different Reynolds numbers 

(500 to 2000), different concentration (1,4 and 8%) and 

different Grashof numbers (0, 10
4
, 10

5
). For the brevity of the 

paper, we have chosen to limit for a 4% concentration. 

A. Hydrodynamic and Thermal Fields 

 

 

 

Fig. 3. The isolines velocities (a) and the isotherms (b) for the nanofluid at 

the exit in forced convection mode (                  

          ). 

The hydrodynamic (a) and the thermal fields (b) are 

illustrated in Fig. 3 and Fig. 4 for the forced (Gr=0) and mixed 

cases (Gr=10
4
, 10

5
) at the exit duct. In the forced regime (a), 

the velocity distribution show a central area where it is high 

and areas where velocities are low located on either side of 

this central part.This velocity distribution obeys a parabolic 

velocity profile which is characteristic of a hydrodynamically 

developed state. In all the cases studied, this profile is quickly 

reached near the entrance where the axial velocity assumes a 

maximum value at the center of the annulus which is about 

1.476. 

From topographically viewpoint, the iso velocities are 

concentric circles. Thermal fields are also shown in Fig. 3 

and 4 for the two cases (b). The topography of the thermal 

fields shows for the case Fig. 3(b) that the isothermal surfaces 

are concentric circles whose temperature variation decreases 

from the outer wall to adiabatic. In all cases the maximum 

temperatures are on the outer pipe and minimums are on the 

inner conduit. In the Fig. 4(b), these profiles clearly illustrate 

the influence of natural convection by the deformation of the 

isotherms which are almost flattened in the entire upper part 

of the annular space. These different qualitative and 

quantitative variations are characteristic of the mixed 

convection in a pipe since the gradients of angular 

temperatures are not zero. However, two other important 

points emerge through our results: (i) For the same 

concentration of nanoparticles, temperatures within the 

nanofluid are strongly influenced by the Reynolds number. 

They decrease with increasing Reynolds number. (ii) For the 

same Reynolds number, temperatures undergo circumstantial 

change with concentration. They increase substantially with 

increasing concentration. 
 

 

 
Fig. 4. The isolines velocities (a) and the isotherms (b)  for the nanofluid 

at the exit in mixed convection  (                        

          ). 

(b) 

(a) 

(b) 

(a) 
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B. Heat Transfer 

The heat transfer is illustrated with the Nusselt numbers for 

the forced and mixed convection cases. For the convection 

mode, Fig. 5 shows the variation of the Nu along the duct for 

different Reynolds numbers. It is clear that these variations 

with abrupt decrease in the short entrance zone and a very 

slow diminution and asymptotic, constant at the large exit 

zone is physically acceptable with the same behaviour for a 

fluid flow in forced convection. In contrast, the Fig. 6 

illustrates perfectly the effect of the increase of the Grashof 

number on the evolution of the nanofluid along the pipe. For 

a same Reynolds number and a same concentration of 

nanoparticles the Nusselt number increase with the 

increasing of the Grashof number. 

 

 
Fig. 5. The Nusselt number profiles along the annulus for the forced 

convection case. 

 

 
Fig. 6. The Nusselt number profiles along the annulus for the mixed 

convection case. 

 

V. CONCLUSION 

This work is a numerical simulation of convective heat 

transfer in nanofluid flowing through an annulus formed by 

two horizontal concentric cylinders. The inner cylinder is 

adiabatic while the outer cylinder is subjected to constant 

parietal heating. The results can be synthesized as follow: 

when the concentration is fixed, the temperature within the 

nanofluid is strongly influenced by the Reynolds number. 

They decrease with increasing Reynolds number. Whereas 

for the same Reynolds number, temperatures undergo 

circumstantial change with concentration. Also, by the 

influence of the Grashof number, it is seen that very near the 

inlet, the variation of the temperature of the interface is 

similar to that of the forced convection. Under the effect of 

natural convection, the azimuthally variation of the 

temperature at the interface becomes large.  The increase 

Grashof increases the heat transfer quantified by growth 

Nusselt number. This work confirmed the increased heat 

transfer when using a nanofluid instead of a single fluid. In 

addition to the natural effect of the mixed convection which 

promotes mixing of fluid layers, there is also an improvement 

in heat transfer due to the nature of nanofluid by the addition 

of the thermal conductivity of the solid particles which 

increases the overall thermal conductivity of nanofluid. 
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