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Abstract—In the reliability designing procedure of the vehicle 

components, when the distribution styles of the random 

variables are unknown or non-normal distribution, the result 

evaluated contains great error or even is wrong if the reliability 

value R is larger than 1 by using the existent method, in which 

case the formula is necessary to be revised. This is obviously 

inconvenient for programming. Combined reliability-based 

optimization theory, robust designing method and reliability 

based sensitivity analysis, numerical method for reliability 

sensitivity design were presented based on fourth moment 

technique, and the reliability sensitivity of the capstan and drive 

shaft in track-laying vehicle with non-normal random 

parameters were extensively discussed. The variation 

regularities of reliability sensitivity were obtained and the 

effects of design parameters on reliability of the capstan and 

drive shaft in track-laying vehicle were studied. The method 

presented in this paper provides the theoretic basis for the 

reliability design of tracked vehicle components, utilizing the 

reliability-based optimization and robust design method in the 

reliability designing procedure reduces the manufacture cost 

and provides the theoretical basis for the reliability and robust 

design of the vehicle components, the method can be very useful 

if it extended to correlated area of machine sensitivity design. 

 
Index Terms—Capstan, drive shaft, reliability sensitivity 

design, arbitrary distribution parameters, fourth-moment 

technique.  

 

I. INTRODUCTION 

Reliability analysis of tracked vehicle components is highly 

related to the quality of product in terms of its service lifetime, 

maintenance cost, and the risk of failure. In engineering 

practice, given the probability distribution of basic modeling 

variables, reliability analysis determines the corresponding 

failure probability of the structure under consideration [1], 

[2]. Inversely, it is also significant to calibrate the distribution 

parameters of modeling variables given a predefined level of 

structural failure probability [3], [4]. The inverse procedure 

of reliability analysis is referred to the reliability-based design 

optimization in the paper. Since that available optimization 

procedure are usually formulated as the gradient-based 

trade-off process, sensitivities of structural failure probability 

(Pf) with respect to each distribution parameter, then, are vital 

to implement the optimization [5], [6]. In addition, 

reliability-based sensitivity analysis is considered to be 

important due to the fact that it is capable of evaluating the 
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impact of design parameter changes on component safety. 

Robust design theory can produce optimum results that are 

not sensitive to the perturbation of basic parameters [7]. The 

earliest idea of robust-Taugchi method [8], was originated 

from the field of quality control in 1960’s. After introduced 

into the engineering world, the concept of Taugchi method 

can be classified into the following two categories [9]: 

(a)Semi-empricial or empirical robust design method, 

including classical Taugchi method, response surface method, 

and general model method, etc; (b)Robust-based optimization 

method, which depends on the adopted optimization method, 

such as the tolerance polyhedron method, gradient-based 

sensitivity analysis, and the method on tolerance propagation.  

During the last four decades of the 20th century, there has 

been considerable research in the area of engineering [10]. It 

provided a thorough summary of researches on reliability 

design of vehicle components with efficient and accurate 

computational reliability theories. It mentioned a simple 

method which was presented for a second-order structural 

reliability approximation. The method was based on an 

approximating paraboloid [11], which was fitted to the 

limit-state surface at discrete points with minimal distance 

from the origin. According to the methods of reliability 

sensitivity considered, there are two paths [12]: one is based 

on the moment method, and the other is a numerical 

simulation on the basis of Monte-Carlo simulations. 

The concept of robust design was quick spread in both 

academic and industry [13]-[15], since that robust design can 

guarantee the minimum output variance as involving a 

relative large noise in input variables. A reliability model and 

reliability-based design optimization methodology for 

maintenance were presented by LIU, et al. [16]. The fusion of 

the probabilistic finite element method(PFEM) and reliability 

analysis for probabilistic fracture mechanics (PFM)was 

presented by GESTERFIELD. And at the same time 

FARAVELLI introduced and discussed a stochastic finite 

element method [17]. It can be used for the analysis of 

structural and mechanical systems whose geometrical and 

material properties have spatial random variability. The 

method utilizes a polynomial expansion of the numerical 

nonlinear structural operator(for which actual analytical form 

is unknown).SUES [18] also described a method as most 

probable point system simulation(MPPSS) that was used to 

obtain system sensitivity factors, that is, the importance of 

each random variable to the system reliability. With the 

Edgeworth series, robust optimization of a coil tube-spring 

with non-normal distribution parameters was studied by 

ZHANG et al. [19]. The Edgeworth series has been defined in 

the infinite domain, which can be trusted to approximate any 

realistic structural probabilistic response defined as an 
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implicit or explicit function of input random variables [20]. 

If certain factors on the tracked vehicle components failure 

have a greater impact, so in the process of design and 

manufacture of it needs to be strictly controlled, making it 

small enough to ensure that the changes in vehicle 

components have adequate safety and reliability; on the 

contrary, if the change of a factor of vehicle reliability is not 

significantly affected parts, vehicle components during the 

design and manufacturing process, can be treated as a fixed 

value, which can reduce the complexity of the design and 

manufacture. Reliability sensitivity design has been fully 

developed nearly forty years. However, some tracked vehicle 

components’ parameters are non-normal distribute in fact, the 

reliability sensitivity analysis need to know the distributing 

model, so it is hard to analyze exactly the reliability of tracked 

vehicle components. This paper discusses the 

reliability-based robust design of vehicle components with 

non-normal distributions of parameters, based on the 

perturbation technique, fourth-moment technique, and the 

robust design method. Under the consideration of the 

characteristics of random variables is know, it can quickly and 

accurately obtain reliability sensitivity design information of 

vehicle components.  

 

II. PERTURBATION METHOD OF RELIABILITY DESIGN 

A fundamental problem in reliability analysis is the 

computation of the multi-fold integral of the reliability R: 

 
  0

X
g

R f dX


  X
X                               (1) 

where  Xf X  denotes the probability density function of 

random parameter vector  1 2

T

nX X XX , and  g X  

defines the state function, representing the safe and failure 

states where 

 

 

0, failurestate,

0,safestate,

g

g






X

X
                            (2) 

And   0g X  is the limit-state equation representing an 

n-dimensional surface, which may be called the “limit-state 

surface” or “failure surface”. 

The vector of random parameters X  and the state function 

 g X  are expanded as 

= d pX X X                                     (3) 

     = d pg g gX X X                            (4) 

where   is a small parameter. The part of Eqs. (3) and (4) 

that is denoted by subscript d is the certain part of the random 

parameters, and the part that is denoted by subscript p is the 

random part, having a zero mean value in the random 

parameters. Obviously, it is necessary for the value of the 

random part to be smaller than the value of the certain part. 

Both sides of Eqs.(3) and (4) are evaluated about the mean 

value of the random variables as follows: 

     =E d p dE E X X X X                       (5) 

       =E g d p dE g E g g           
X X X X      (6) 

Both sides of Eqs.(3) and (4) are evaluated about the 

variance and third and fourth moments of the random 

variables, and the state function as follows: 

       =E g d p dE g E g g           
X X X X         (7) 

   
    3 33

3 pC E E         
X X X X               (8) 

   
    4 44

4 pC E E         
X X X X                (9) 

     
    

  22 2ar pV g E g Eg E g            X X X X (10) 

      
    

  33 3

3 pC g E g Eg E g            X X X X (11)  

     
    

  44 4

4 pC g E g Eg E g            X X X X (12) 

According to Kronecker algebra, the notation  
 k

 

represents the kth order Kronecker power of an arbitrary 

matrix. i.e., for the arbitrary matrix P, its kth Kronecker power 

can be expressed as 
   1k k

P P P P P P


     . 

The symbol   represents the Kronecker product, which is 

defined as      ijp q s t ps qt
A B a B

  
  . 

By expanding the state function  pg X  to a first-order 

approximation in a Taylor series of the vector-valued and 

matrix-valued functions at a point   dE X X , which is on 

the failure surface   0pE g   X , the expression of  pg X  

is given by 

 
 d

p pT

g
g






X
X X

X
                              (13) 

Substituting Eq.(13) into Eq.(10-12), we obtain 

 
 

 

 
2

2 d

g T

g
Var g Var cs

 
         

X
X X

X
           (14) 

 
 

 

 
3

3 3

d

g T

g
C g C cs

 
         

X
X X

X
              (15) 

 
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 

 
4

4 4

d

g T

g
C g C cs

 
         

X
X X

X
          (16) 

The probability density function or joint probability density 

function of the basic random parameters is needed to calculate 

the structural reliability or failure probability. However, it is 

difficult in practice to have enough information to determine 

their distribution types. Even when the probability 

distribution of the state function is approximated, it is difficult 

to obtain failure probability by numerical integration. 

Thus, the moment-based method is one of the most 

practical methods for reliability analysis. In the 

second-moment method, the reliability can be defined as 
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 SM SMR                                     (17) 

where 

 

 

g

SM

g

E g

Var g






   
  

X

X

                        (18) 

and    is the cumulative stand normal distribution 

function, 
g  is the mean value of the state function  g X . 

The Fourth-moment method can be used under the 

circumstance of the state function being explicit expression 

and the first four terms of the random parameters being 

known. The limitation of the Fourth-moment method is that 

more moments should be known while comparing to the 

Second-moment method and thus statistical difficulties may 

occur. However, because of this limitation, the 

Fourth-moment method has the advantage when dealing with 

reliability problems with abnormal distribution functions. 

Under the circumstance of the first four moments of state 

function and random variables being given, and the first four 

moments of the basic random parameters known, the 

reliability can be obtained by using the fourth-moment 

method: 

 FM FMR                                (19) 

where 

   

  

2
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2

4 3 4

3 1 1

9 5 9 1

g SM g SM

FM
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   


  

  


  

            (20) 

And 
3g 、

4g  is the coefficient of skewness and kurtosis, 

 
3

3 3 3

g
g

g

g g

E  


 

 
   

X  
4

4 4 4

g
g

g

g g

E  


 

 
   

X
    (21) 

where g , g  and g  are obtained from Eqs. (14) to (16), 

respectively. The computational relationship between the 

skewness and Kurtosis of arbitrary random variables in the 

state equations is 
2

4 3 1g g   . 

 

III. RELIABILITY SENSITIVITY 

The reliability sensitivity with respect to the mean value 

d
X  and variance  Var X  of the basic random parameters 

X  is derived as follows: 

    gFM FM FM SMFM

T T

FM SM g

dR R

d

  

  

 


   X X
          (22) 

   
gSMFM FM FM FM

FM SM g g

dR R

dVar Var

 

   

     
           

X X
 (23) 

The terms on the right side of Eqs. (22) and (23) can be 

expressed as 

 FM
FM

FM

R
 







                            (24) 

where    is the probability density function of standard 

normal distribution, 

 
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n
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  
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 


                                (28) 
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12 31
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g SMFM
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
 


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where 
2

4 39 5 9g gQ      

4 1gM    

 2

3 1g SMU   
 

Substituting Eqs. (14)-(21) and (24)-(30) into Eqs. (22) and 

(23), one will obtain the reliability sensitivity results, 
T

FM ddR dX  and  FMdR dVar X .  

 

IV. RELIABILITY-BASED ROBUST DESIGN 

Typically, the reliability-based robust design of tracked 

vehicle components is a multi-objective optimization 

procedure, where the objectives are to minimize the weight 

and structural reliability sensitivity with respect to the 

nominal value of the design variables. Optimum constraints 

include the expected structural reliability and geometric 

parameters. Restrictive random direction method is employed 

to proceed optimization design. The reliability-based robust 

design problem may be reduced to a selected problem by the 

complicated objective method, and the multi-objective 

optimization model is expressed as 

   

 
1

0

min

. . 0, 0, 1, ,

n

k k d

k

i d

f w f

s t R R q i l







    

X X

X

             (31) 

where 0R  is the desired structural reliability, kw  are k th 

weighting factors. The value of kw  is determined by the 

importance of the sub-objective function respectively. In the 

paper, kw  is given as below: 
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(32) 

where 
kX  is the optimal point of the k th sub-objective 

function. In the following examples, two objective functions 

are considered. The function  1 df X  is the area or volume of 

the tracked vehicle component, and  2 df X  is the reliability 

sensitivity with respect to the nominal value of the design 

parameters  1 2

T

mx x x x , and  i dq X  is a problem 

dependent inequality constraint on shown. 

 

V. EXAMPLES 

A. Reliability-Based Robust Design of a Capstan 

A capstan (Fig. 1) is an important power transmission 

component in drive system, it can transfer the power from the 

drive shaft to track wheel, which engages through the gear and 

track wheel, it can toggle track campaign, only to withstand 

the torque effect. 

 

 
Fig. 1. Solid models of capstan. 

 

 
Fig. 2. Structure sketch of a gear on capstan. 

 

The tensile stresses of the capstan is 

0 1

2

1

3 ( )P D D

D h





                       (33) 

where P  is the tensile load on the capstan, and the cross 

section dimensions are h , 0D , 1D , P . 

From reliability theory, the state equation of the capstan is 

defined as 

 g X r                             (34) 

where r is the material strength. The random variable vector 

is given by  0 1

T
X r D D h P     . 

1) Generally speaking, dimensions and material properties 

are usually within normal distribution. The statistical 

characterization of material strength r  

is    , 135,5.256 MPar r   . The dimensions 

are    , 50,0.25 mmh h   ,    
0 0
, 1200,6 mmD D   , 

   
1 1
, 1000,5 mmD D   . The load P  is an arbitrary 

distributed random variable, with first four moments. 
   6 5 2 15 3 21 4, , , 1.3025 10 N,1.2024 10 N ,1.9872 10 N ,1.5724 10 NP P P P          

Then, the reliability index, the reliability, and the reliability 

sensitivities can be determined as 
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  

    
        

X
 

2) If the desired reliability 0R equals 0.999, we can 

perform the optimization design of capstan 

dimensions r , 0D , 1D , h and P . 

First, we set up the objective function: (a) to minimize the 

capstan weight by minimizing the section area  1f x ; (b) to 

minimize the reliability sensitivity with respect to the mean 

value of design variable  0 1, , , ,
T

r D D h Px . 

    
32

1 1 2 3 4 51
4

f x x x x x x


                       (35) 

 
2

5

2

1

FM

i i

R
f x

x

 
  

 
                             (36) 

Second, we set up the optimization constraints: 

 1

0 0gg R                                    (37) 

4
2 1 2 3

3

100.0, 2 0,1.4 2.8
x

x x x x
x

                 (38) 

Third, given initial values 135MPar  , 

0 1200mmD  ,
1 1000mmD  , 50mmh  , 

13025000NP  . 

Common reliability optimization method is applied and 

only the lightest weight of the capstan is considered, that is, 

single objective function of the minimum area  1f x  need to 

be resolved. The obtained minimum area and sizes of the 

capstan are as follows: 

2

06447.012mm , 138.67MPa, 1159.62mmS r D    
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1 983.64mm, 53.49mm, 13.375MPaD h P    

According to the results of reliability optimization, the 

reliability index, reliability and reliability sensitivity of the 

tension bar are calculated out as follows: 

3.081576, 2.432581,

0.9919524, 0.9929

SM FM

FM MCSR R

  

 
 

4

4

0

3

1

3

7

9.035 10

5.978 10

1.0561 10

6.192 10

4.397 10

TT

T

R r

R D

dR d R D

R h

R P











    
  

     
     
  

    
        

X
 

Fourth, the reliability-based robust optimized results are 

2

06512.947mm , 136.09MPa, 1189.36mmS r D    

1 1004.37mm, 49.62mm, 13.289MPaD h P    

Based on the results computed by the reliability-based 

robust design approach, the reliability index, the reliability, 

and the reliability sensitivity of the capstan become 

3.287312, 2.57196,

0.9991982, 0.9962

SM FM

FM MCSR R

  

 
 

4

4

0

4

1

3

9

7.896 10

3.232 10

5.532 10

2.198 10

8.562 10

TT

T

R r

R D

dR d R D

R h

R P











    
  

     
     
  

    
        

X
 

From the results obtained by common reliability 

optimization method and reliability sensitivity method 

respectively, it can be found out that the value of reliability 

sensitivity of the design sizes 0 1, , ,h D D P  of the capstan 

has an obvious decrease after reliability-based robust design. 

That is, the reliability of the capstan is not sensitive to the 

variance of the design sizes 0 1, , ,h D D P , and the safe 

reliability and robustness of the capstan have been improved.  

B. Reliability-Based Robust Design of a Drive Shaft 

A drive shaft (Fig. 3) is another important power 

transmission components, it can transfer the power from the 

side reducer to capstan, which fixed in the capstan though 

internal splined sleeve, to withstand the torque and moment 

effect. 

 

 

 
Fig. 3. Solid models of drive shaft. 

 
Fig. 4. Structure sketch of a drive shaft. 

 

The mechanical model of drive shaft (Fig. 5), thus, the 

shear stress and the normal stress on the drive shaft are 

T

W

                                   (39) 

x

M

W
                                    (40) 

 
Fig. 5. Mechanical model of drive shaft. 

 

where W
 is the coefficient in torsion, xW  is the coefficient 

in bending strength. From material mechanics, the coefficient 

in torsion and the coefficient in bending strength of the drive 

shaft are defined as 

 41
16

W
D




                              (41) 

 41
32

xW
D


                              (42) 

where 
41 ( / )d D   ; d  is the bore of drive shaft, D  is 

the outside diameter of drive shaft. 

When the shaft is stepped shaft, the diameter can be 

replaced with 
1 2min( , , , )nD D D D  and 

1 2max( , , , )nd d d d  for correction. 

From material mechanics, the maximum stress of the drive 

shaft is defined as 

 
22                                  (44) 

where   is stress reduced value, general equal to 0.6. 

From reliability theory, the state equation of the capstan is 

defined as 

   
22g X r                           (45) 

where r is the material strength. The random variable vector 

is given by  
T

X r d D M T     . 

1) The statistical characterization of material strength r  

is    , 135,5.256 MPar r   . The dimensions of the drive 

shaft are  1 120,6D mm , 
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 2 110,5D mm ,  3 100,5D mm . To minimize the 

drive shaft weight by replace the shaft with hollow shaft. Give 

initial value  35,8d mm . The load M and T  are an 

arbitrary distributed random variable, with first four 

moments.  





3 2 2 10 3

15 4

2.5619 10 ,1.3758 10 ,5.3951 10 ,

2.3482 10

M N N N

N

   


 





6 5 2 15 3

21 4

1.3025 10 ,1.2024 10 ,1.9872 10 ,

1.5724 10

T N N N

N

   



 

Then, the reliability index, the reliability, and the reliability 

sensitivities can be determined as 

3.102912SM  2.466713FM  0.9931821FMR 

0.9935MCSR   

5

5

4
3

7

8

7.321 10

9.754 10

5.308 10

5.731 10

6.086 10

TT

T

R r

R d

dR dX R D

R M

R T











   
  

     
      
  

     
        

 

According to the results obtained by reliability sensitivity, 

it can be found out that the reliability of drive shaft rises when 

the mean value of r  and 3D  increase, and the reliability falls 

when the mean value of d  and load increase. Besides, the 

maximal rate of change is dimension 3D , and , , ,d r M T are 

in turns. Which means the diameter 3D  needs to be changed 

first in the process of design and manufacture when the drive 

shaft must be more reliable. 

2) Because of the drive shaft should be connected with the 

capstan, the diameter 3D  can’t be changed easily, to 

minimize the drive shaft weight and the reliability sensitivity 

with respect to the mean value of design variable 

 
T

X r d D M T     by changing inside diameter d . The 

reliability and quality of drive shaft with different inside 

diameter d  can be determined in Table I. 

 
TABLE I: RELIABILITY AND QUALITY OF DRIVE SHAFT ON DIFFERENT D/D 

AS FIXED D 

d(mm) 35 42 50 58 62.5 

d/D3 0.35 0.42 0.50 0.58 0.625 

Reliability 0.9932 0.9805 0.9712 0.9506 0.9272 

Quality (kg) 34.5 32.6 29.9 26.7 25.1 

 

According to the results in Tab I, it can be found out that the 

reliability of drive shaft falls when the mean value of inside 

diameter d  increase and the quality also decrease. Further 

more, when the inside diameter d  increases 20%, the quality 

decreases 5%, but the reliability decreases just 1.3%, satisfied 

the requirement of reliability, so the drive shaft can be 

replaced with hollow shaft, and the inside diameter d  can be 

designed depend on required reliability. 

 

VI. CONCLUSION 

1) The fourth moment approach for reliability sensitivity 

design of vehicle components is proposed, an assessment of 

influence of changes of determined design parameters on 

vehicle components’ reliability is made to fully reflect the 

sensitivity of each design parameter to vehicle components’ 

failure. 

2) This numerical reliability-based robust design technique 

can improve the design level of vehicle components and 

reduce the manufacturing cost, and it also provides a 

theoretical principle for reliability-based optimization design 

of vehicle components. 

3) Compared with common optimization computing 

method, it is clear that the reliability obtained by using the 

technique proposed rises obviously (>0.04%), and the 

reliability-based sensitivity’s absolute value decreases 

(reduction>0.01%). Therefore, it is clear that in 

manufacturing or using, tiny variation of design parameters 

can fulfill both the safety requirements and the robust 

requirements. 

4) According to the sensitivity analysis results from the 

drive shaft, the hollow shaft already meets reliability 

requirements. This will not only reduce the quality of the 

shaft, it can also be refined according to the reliability of the 

design requirements. 
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