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Abstract—Dexterous multi-finger robotics hands/or 

prosthesis hands are complicated devices to model, control, and 

to motorize. Modeling involves building coordinated kinematics 

relations, while the dynamic model involves grasping forces and 

optimized distributions of forces and torques at grasping 

locations. Over the last thirty years or more of research, a 

coordinated control of fingers for such devices was done 

analytically, however such control issues were facing few 

number of difficulties. Therefore, the purpose of this paper is to 

look at novel approach for defining grasping patters from EEG 

readings, then to learn-mirror such patters into robotics hand- 

prosthesis. We shall create an association between fingers 

motions, forces, and particularly detected EEG brainwaves 

from human. Such an association is very useful for robotics 

humanoids, or for prosthesis. The association between human 

EEG to robotics is modeled here, and it will be used for grasping 

by system robotic by learning (via training) a robotics 

multi-finger dexterous hands. In addition, such an association is 

also useful for controlling a prosthesis for rehabilitations 

purposes.  

 

Index Terms—EEG, rehabilitation, BMI, robotic-prosthetic, 

patterns recognition, learning systems.  

 

I. INTRODUCTION 

A. Robotics and Rehabilitation 

Grasping with five fingers by a robotics or prosthesis is not 

an easy task. Two issues are to be considered, the first is 

related to finger-digits coordinated motion, while the second 

is totally related to how fingertips forces are applied and 

manipulated. Within this research, we shall be presenting a 

methodology for using human EEG brainwaves patterns for 

decoding, analysis, train, hence to motorize robotics 

hand/prosthesis for grasping purposes. In particular, we try to 

associate the recorded brainwaves patterns with the various 

five finger motions, and fingertips forces, Fig. 1. In this 

respect, dividing and clustering of hand EEG grasping 

patterns do represent to focal problem to be solved, Fig. 2. 

“Stroke is defined as ‘rapidly developing clinical signs of 

focal (at times global) disturbance of cerebral function, with 

symptoms lasting 24 hours or longer or leading to death, with 

no apparent cause other than of vascular origin’ ([1], 

Hatano)”. Within same respect, there has been a number of 

studies and research about robotics and their use for rehabs 

applications, where it was found that, practicing such an 

intense and active repeated hand and fingers practice is to 
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enhance the functionalities of affected arm and hand. Refer to 

[2]-[8] for further works and analysis in this respect.  

Loss of hand function causes a severe decrease in quality of 

life for affected individuals [9]. In addition, there have been 

different classes of therapies. However, lasting disabilities 

result in a typical lifetime cost between $100k and $2M per 

patient, including inpatient care, rehabilitation, and follow-up. 

The most effective therapies have patients actively controlling 

their limb, which is not an option in cases of severe paralysis. 

Through intensive and effective therapies, it was found that 

most of the patients are able to control and move their limbs, 

however, this is not possible once the patient is suffering from 

severe paralysis. Over the last number of years, it has been 

reported that, BCIs are helpful in terms of picking up brain 

signals and associated technology to do so, are developing 

very fast.  

 

 
Fig. 1. Associating EEG patterns to fingertips motorizing.  

 
Fig. 2. Typical 32- channels EEG recorded patterns for a  

grasping trial, [10], [11], [14]. 

 

While BMI involves a computational stages, resulting EEG 

as in Fig. 2, BMI promises new hope for treatment, they 

remain in the research stage. In addition, conventional BMIs 

cannot be applied so easily, and specifically once it comes to 

cases of brain injury since the classical motor signals in cortex 
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contralateral to the target limb needed would be gone with the 

injury. In addition, detecting the brain waves signals through 

inserting the Utah Electrodes (via surgery) is not a straight 

forward procedure. There are a number of recent studies 

related to human hand fingers motion in relation to specific 

brain wave signals. Of a particular important is the hand 

finger motion, and the manner human applies forces during 

different grasping situations. Robotic-Prosthesis control, and 

their rehabilitation applications are getting active in terms of 

research trends and tools. Re-motorization of hand fingers 

after brain caused disabilities is not an obvious task. In 

addition, conventional neurological therapies and 

rehabilitations efforts, have been found ineffective in 

rehabilitating upper-limb function after stroke or even 

traumatic brain injuries. With the advances of brain 

interfacing technologies, this made it possible to restore some 

of the motor functionalities. Advances in technology has 

resulted in new developments to help people with severe 

paralysis or even with limb loss. Intracortical brain computer 

interfaces, are also being developed to enable personals. 

Recently, there are tremendous efforts and research directions 

to use the EEG Brain waves signals and their associated 

patterns for Robotic-Prosthesis applications. This includes 

the rehabilitations (Rehab) applications. However, due to the 

complexity of such brain patterns, making use of such 

complex patterns for practical grasping learning 

Robotic-Prosthesis is not a trivial task. In this context, this 

talk will be focusing on decoding and the use of the learned 

patterns of neural waves neural waves neural waves for 

grasping applications, in addition to motoring and motion 

control. This is based on using BMI (Brain Machine Interface) 

tools, hence to associate such waves for motorizing and 

controlling a Robotic- prosthesis. In addition, the talk will be 

focusing on dealing with massive interrelated waves, and how 

PCA learning patterns are used for such learning. At the end, 

the talk will also present the current trends world-wide within 

such active area of research. 

Within this paper and in reference to Fig. 3, we shall be 

addressing the problem of relating BNI technology to 

rehabilitation and motion restoration for hand-fingers motion, 

as following stroke and traumatic brain injuries, or even other 

related brain dysfunctional behavior that prevent motoring of 

fingers. Some previous efforts in a similar direction, they have 

employed the UTAH Prop to detect brain waves. However, 

such an approach does require an insertion of UTAH prop 

legs beneath the skulls. A fundamental work to be presented is 

the using other brain wave sensing techniques. In order to 

achieve that, we shall rely on a developed brain wave signal 

detection devices (like the massive signals head cap) for brain 

waves detection rehabilitation that synthesizes recent 

developments in neurophysiology, electronics, and physical 

therapy into a BCI hand orthosis. Such brain waves signals 

were present in cortex anterior to ipsilateral primary motor 

cortex, with wave patterns operating below 40Hz [12], [13]. 

Such patterns are accessible via EEG.  

Once brain waves signals are detected and conditioned, 

they are then analyzed for pattern recognition via artificial 

neural network. Models are built associated with such signals. 

Finally a closed control system is built around the artificial 

limb (the hand), to restore the motoring action. Limb (Hand) 

tactile sensing and closing the loop in a feedback will 

facilitate neural plasticity. In addition it will be strengthening 

existing and developing new neural pathways ipsilateral to the 

affected hand that will ultimately restore motor control. 

Allowing the patient to regain hand control with their 

thoughts alone should also provide tremendous 

encouragement in the rehabilitation process.   

 

 
Fig. 3. System layers. Further details are found in Mattar et al. [11]. 

 

II. EXPERIMENT: PATTERNS ACQUISITION 

Simultaneous EEG and hand kinematics were recorded 

from healthy participate, while they achieved a grasping task. 

The experimentations sessions were conducted to generate 

real-time signals. In reference to Luciw, et al. [15], twelve 

participates were involved, eight female, and the age was 

ranging between (19-35). This is further depicted in Fig. 4. 

Brain EEG patterns were recorded using special 

instrumentations. This involves the use of head-cup, 

measuring the waves patterns at various locations over the 

participants heads. In reference to Luciw, et al. [15], the EEG 

cap was BrainAmp sampled at (5 kHz). The raw data were 

digitized, filtered, hence the data were stored. Data were 

stored in Matlab data structure format. This has made it easy 

to be processed a number of coding machines.  
 

 
Fig. 4. Part of the grasping experimentations, Luciw, et al. [14]. 

 

III. COMPUTATIONAL ANALYSIS 

A. EEG Brainwaves Clustering Phase 

Clustering is referring to gather similar data patterns and 

behavior into within regions. These regions are also 

characterized by dimensionals (x, y, z …) and centers. Once 

dimensionals parameters and centers are detected from the 

EEG waves, then it becomes an easy task to associate any 

particular EEG wave pattern to a particular region. This is 

definitely useful for creating an association between the EEG 

brainwaves and the robotics-prosthesis hand. An important 

International Journal of Materials, Mechanics and Manufacturing, Vol. 5, No. 3, August 2017

170



  

clustering paradigm is the fuzzy clustering. Fuzzy clustering 

is being characterized by the fuzziness of regions and 

boundaries, and the creation of (if then rules). Therefore, for 

detecting how the EEG patterns are related to the nature of the 

experiments (how EEG are related to motion of the fingers 

during the experimentation phase), we use fuzzy clustering 

(c-means) technique to compute such inherent signals 

associated patterns. Based on the above definitions, fuzzy 

clustering can be precisely formulated as an optimization 

problem. It involves a minimization of a defined functional in 

terms of distances from the clusters centers to each point 

within the EEG patterns. This is formulated as:  

 

for each  cki 21,    nj 21 , we need to 

minimize  kij vuJ , : 
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One of the widely employed clustering methods based on 

Eq. (2) is the fuzzy c-means algorithm. The objective function 

of the FCM algorithm is expressed in the form of: 

           1,
1

2

1


 

mvxu,vuJ
c

i

ij

n

j

m

ijkij
                 (3) 

In Eq. (3), (m) is known as the exponential weight that 

influences the degree of fuzziness of the membership 

(partition) matrix.  

B. EEG Brainwaves Decoding Phase 

After we are done with the EEG waves partitioning via the 

clustering routine defined by Eq. (2) and  kij vuJ , , we turn 

the attention to the primitive decoding methodology. This is 

correlation measure among the different patterns. 

Traditionally more rigorous statistical validation tests are 

employed in which the waves are examined, once found to be 

sufficiently correlated with a function of the data then the 

relation between waves can be measured. This is achieved by 

defining a matrix Z(.): 
 

         Td

t ttmtmtm )(,),1(),()(  xZ                    (4) 
 

   In Eq. (4),  t
x  is an observational vector of the EEG waves 

as (inputs), (outputs) and (errors), seen up to time step (t) i.e. 
 

               Ttttt 111 ,,  eyux                                      (5) 

and m(t-1) is a monomial of the vector, as defined by: 
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The following two hypothesis can be defined: 
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and the purpose of validation is to use the data to decide if 

holds. Two different test statistics are employed, the most 

common being the standard sample correlation measure: 
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In Eq. (7), ]1,1[)(,,,1  kandtk d  . If 0H  holds this 

statistic asymptotically approaches a normal distribution, and 

with 95% confidence limits 0H  is accepted if 

]/96.1,/96.1[)( NNk  . 

 
Fig. 5. Experimentations results. Three clustered patterns were detected. 

Further analysis is found in Mattar et al., [11].  

 

Fuzzy clustering algorithm has been applied to the 

recorded EEG waves. Three clusters were therefore detected. 

This is shown in Fig. 5 and Fig. 6. This indicates that all of the 

recorded EEG patterns for a single try, at a particular time 

instant are nearly related to each other by similar patterns. 

This also indicates how such clusters are having overlapping 

regions.  

 
Fig. 6. Another representation of the clustered EEG patterns, vector 

representations. Further analysis is found in Mattar et al., [11]. 

 

IV. EEG-PATTERNS HAND ASSOCIATION  

In order to verify the adopted recognition approach, the 

system was simulated using the e_Grasp. In reality, the 

e_Grasp is a five fingers robotics hand simulator. e_Grasp 

also runs on Matlab environment. It computes both the 

closed-chain kinematics, the closed chain-dynamics. It is also 

a fingers force optimization based-simulation environment. 
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e_Grasp was used to make use of the recorded related EEG 

patterns and data-set. Data patterns recorded from the EEG 

set were analysed, clustered, and recognized. Hence, an 

association was created between the EEG patterns, and the 

real fingers motions and gasping nature. The reason why 

e_Grasp was adopted initially, this is because we would like 

to observe the hand fingers motion over the simulator, rather 

than real. Different run were conducted. This is including data 

for different robot hand grasping and behaviours. It is divided 

into two sets: TRAINING patterns, and VERIFICATION 

patterns. A number of behaviours of each 

Matlab-Based-simulation were used. Hence there are (3 

simple hand behaviours) in the TRAINING phase and 3 

behaviours over the VERIFICATION phase. Majority of 

hand behaviours run in the Matlab-Based-Simulation 

configuration data-set are for different grasp conditions. This 

is to create as much as possible of information about hand in 

space motion. e_Grasp simulator has generated number of 

dissimilar hand behaviours (run over a number of times) 

compared with the hand behaviours data-set. This is tabulated 

in Table I. 

 
TABLE I: GRASPING BEHAVIOURS AND ASSOCIATION 

Case Behaviours Human Behaviours Robotics Hand 

Motoring 

 

i 

Light Grasp  Human fingers are 

closed around 

object 

Robotic joints in finger 

are motored in curling 

shape  

 

 

ii 

 

Fair Grasp 

Human fingers are 

closed around 

object, with little 

tips force 

Hand joints are 

motored in curling 

shape, with force 

control. 

 

 

iii 

 

Manipulation 

Task   

Human does fingers 

motion, with 

grasping and force 

are in actions 

Hand joints are 

motored in curling 

shape, with continuous 

control of motion and 

force control. 

iv Fingers free 

movements 

No fingers motion, 

no grasping force 

are in actions 

EEG waves and 

patterns were detected 

 

V. CONCLUSION 

 Learning EEG brainwaves resulting from grasping and 

manipulation mechanism was presented within this article. 

That was based on using human EEG brainwaves for training 

a robotics dexterous hand- prosthesis system. The learning 

approach was based on learning the inherent features and 

characterization for the wave patterns. Inherent 

characterizations were based on reducing the dimensionalities 

of the EEG waves, after performing clustering. The main 

issue that hinders better accuracy is the nature of such EEG 

waves, as they are totally related, correlated, and they are also 

of higher dimension, with almost random patterns. The 

presented methodology did reply on learning the gasping 

waves and patterns detected by a head cup. Due to the size of 

the detected EEG signals generated by the brain, pattern 

recognition technique was therefore adopted. 
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