

 

Abstract—Catalysis of the supported oxide catalysts in the 

direction of the methane oxidation reaction is investigated. 

Modified nickel-containing catalysts studied at the reaction of 

partial oxidation of methane to synthesis gas. The effect of 

modifying additives (cerium and lanthanum oxides) on the 

activity and resistance to coking NiO / γ -Al2O3 catalyst was 

defined. The introduction of cerium and lanthanum oxides 

increases resistance to catalyst coking. Rising of lanthanum 

modified catalyst activity associated with a decrease in its 

recovery temperature and increased dispersion of particles of 

metallic nickel. It is found that the developed 3% NiO + 2% 

La2O3 / ɣ-Al2O3 catalyst for 250 hours under laboratory 

conditions (CH4: O2 = 2: 1, Tr = 750oC and W = 1000 h-1) does 

not lose its activity. It was determined that the use of a 

tungsten heteropoly acid as the active phase supported on 

Al2O3 can direct the process towards the formation of ethylene. 

 
Index Terms—Methane, oxidation, catalyst, ethylene, 

synthesis gas. 

 

I. INTRODUCTION 

The catalytic conversion of natural gas into motor fuel 

components, the raw material for the petrochemical industry 

and organic synthesis for over 20 years is the subject of 

intensive research are driven by the problem of reducing the 

resources of hydrocarbons of petroleum origin [1]. Of 

particular interest in this respect are the partial oxidation of 

methane to synthesis gas and an oxidizing dimerization of 

methane to C2 hydrocarbons [2]-[5]. 

Syngas is a feedstock for the oxygenates (methanol, 

dimethyl ether, etc.), as well as for the preparation of liquid 

and solid hydrocarbons by Fischer-Tropsch synthesis. 

Hydrogen, which is part of the synthesis gas, is used in a 

number of large chemical processes (production of 

ammonia, fuel hydrotreating, hydrocracking of petroleum 

feedstock, the isomerization of n-alkanes and others).  

At the same time, hydrogen can be widely used in the 

future as an alternative engine fuel [6]-[8].  

C2-C4 olefins are of considerable interest as a raw 

material for industrial organic synthesis, which are widely 

used for the preparation of polymer materials, plastics, 

alcohols, esters, carboxylic acids, components of motor 

fuels, and others. 

Ethylene production ranks first in terms of production 

among basic petrochemicals. On its basis produced the 

majority of organic synthesis products and polymer 
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materials such as polyethylene, polyvinyl chloride, 

polystyrene, ethylene oxide, ethylene glycol, synthetic ethyl 

alcohol and al. 

For countries with large reserves of cheap natural gas, the 

practical implementation of these processes today seems 

economically justified [9]-[12]. Therefore, the creation of 

highly efficient, selective and stable catalysts for processing 

light hydrocarbons to produce valuable products of 

petrochemical synthesis is an important practical and 

strategic objective. 

We report here on the activity of silicon and aluminum 

oxides, and a new series of catalysts on the base of H8[Si 

(W2O7)6] nH2O and NiO-La2O3, supported on SiO2 and 

Al2O3 to be tested in partial oxidation processes and 

oxidative dimerization of methane. 

 

II. MATERIALS AND METHODS 

Experiments to test the catalytic activity of the catalysts 

developed conducted on an automated flow set to the 

temperature range 600-850
o
C at atmospheric pressure. This 

set consists of three main parts - the preparation of the 

initial gas mixture, the catalyst quartz flow reactor and gas 

chromatograph for analysis. The reactor is a quartz tube 25 

cm in length and an internal diameter of 9-9.5 mm.  

During the experiments, the reactor is placed vertically 

incoming stream fed into an open top portion and exits 

through the hole in the bottom of the vial. Control 

composition and flow rate of the reacting starting 

compounds, the reactor temperature regulation, the 

evaporator assays run through software. The reaction 

products were identified by chromatography on device 

"Chromos GC-1000" using an absolute calibration method 

and a thermal conductivity detector. Separation of 

components was carried out on two columns (length 2 m, 

internal diameter 3 mm) filled with NaX zeolite and 

porapak -T, carrier gases - helium and argon. 

Determination textural properties of developed catalysts 

and carriers (specific surface (Ssp), pore volume and pore 

size distribution) were carried out by low-temperature 

nitrogen adsorption at 77 K on the automatic equipment 

BEL Japan Inc and heat argon desorption on device 

BELSORP-mini II. Before beginning the sample test is 

produced its degassing consists in heating of the sample in 

the stationary gas flow at a predetermined temperature to 

remove from the surface of the test material absorbed gases 

and vapors. The instrument can examined simultaneously to 

three samples independently. Pressure sensor - 0.666 Pa / 

min. Weight of catalyst 2.92 g. Experience time 3 hours. 

Pressure of saturated vapour 102.19 kPa. Vm = 30.563 cm
3
 

(STP) g
-1

. The surface area calculated by a BET equation. 

Diffraction data (XRD) were obtained on apparatus 

Bruker AXSD2 Phaser (LYNXEYE high speed detector) 
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powder x-ray BrukerD2 using CuK α radiation, voltage 30 

kV and current 15 mA. Radiographs were collected in 2
0
 

angle between 10° and 90° with a scan speed of 5° / min. 

The average size of the crystallite of the catalyst was 

evaluated by X-ray diffraction peak of the expansion using 

Scherrer equation D = 0.9λ / βcosθ, where λ-wave length of 

the radiation (h = 0.154 nm) Cu Kα, β-half-width of the 

peak, and θ-Bragg diffraction peak angle. 

Morphology of surface oxide catalysts was performed by 

scanning electron microscopy Quanta 200i 3D. 

Temperature-programmed reduction (TPR) was 

performed in a laboratory setting, including the gas 

preparation system with a tubular reactor furnace and a 

thermal conductivity detector. Hydrogen reduction was 

carried out by passing the gas mixture (5% H2 and 95% Ar) 

through a reactor at a rate of 30 ml / min. Linear heating 

rate was 10
0
C / min. The changing the concentration of 

hydrogen in the stream was monitored using a thermal 

conductivity detector. 

Quantitative determination of the absorbed hydrogen was 

performed by calibration, built on the basis of reducing of 

accurate batches of NiO. 

Catalysts were prepared by co capillary wetness 

impregnation of the support with solutions of nitrates and 

subsequent drying at 300
0
C (2 h) and calcination at 500

0
C 

for three hours. 

 

III. RESULTS AND DISCUSSION 

Known from the literature [13]-[15] that the active phase 

for the production of synthesis gas by partial oxidation of 

methane is the nickel oxide.  

Therefore, were synthesized nickel catalysts, supported 

on alumina for the production of synthesis gas from 

methane. 

It was studied the effects of nickel oxide contents in the 

concentration range of 0.05 to 10 wt. % supported on 

alumina, on the direction of the process. Fig. 1 shows the 

effect of concentration of the active phase on a support for 

methane conversion and hydrogen and carbon monoxide 

yields at a reaction temperature of 750
o
C. 

 

 
Fig. 1. Effect of nickel oxide concentration on yield of reaction products. 

 

The figure shows that an increase in the nickel content of 

0.05 wt. % to 10 wt. % increases the methane conversion 

and synthesis gas outputs. Moreover, since the 

concentration of nickel oxide on the support of 3 wt. % 

begins a sharp increase of methane conversion and synthesis 

gas output. 

A further increase in the nickel oxide content up to 10% 

does not affect the yield of synthesis gas. Over the 3% Ni / 

ɣ-Al2O3 catalyst hydrogen yield reaches 34%, mono oxide - 

increases to 24% and the carbon dioxide yield is reduced to 

0.5%, the methane conversion was 96%.  

It should be noted that with increasing nickel oxide 

content of 3 wt. % to 10 wt. % conversion parameters and 

the output of desired products are not changed. Perhaps this 

is due to the same active phase composition of the catalyst.  

In order to further improve the efficiency of 3 wt. % Ni / 

ɣ-Al2O3 in the reaction of partial oxidation of methane, the 

catalyst was modified with rare earth elements.  

Phase intensity reflexes with increasing nickel content of 

from 3% to 10% on the support is not changed substantially. 

It is clear from X- rays, that after the oxidation of 

methane over these catalysts in the spectrum appears reflex 

referring to the metal nickel. This change is due to the fact 

that during the partial oxidation of methane under the 

influence of the reaction medium (CH4, H2, CO), some of 

the nickel oxide is reduced to metallic nickel. 

 

 
Legend: a- 1% Ni-; b- 3% Ni-; c - 5% Ni-; d- 7% Ni-; e - 10% Ni / γ-Al2O3 

Fig. 2. XRD spectra of 1-10% Ni / γ-Al2O3 before and after the reaction.  

 

Based on the review of the literature [16], [17] the oxides 

of cerium and lanthanum are selected as modifying 

additives (Fig. 3). 

 

 
1- Ni / Al2O3; 2- Co / Al2O3; 3- NiSe / Al2O3; 4- NiLa / Al2O3 

Fig. 3. Effect of modifiers on the catalytic activity of Ni / Al2O3 catalyst. 
 

TABLE I: TEXTURAL CHARACTERISTICS OF THE CATALYSTS 

Catalyst Ssp., м
2/g The spec. pore 

vol., sм3/g 

Average pore 

size, нм 

Ni/Al2O3 161 0.069 1.7 

Ni-Ce/Al2O3 158 0.068 1.7 

Ni-La/Al2O3 163 0.070 1.7 

 

Fig. 3 shows that the best results are obtained at NiLa / 

Al2O3 catalyst, where the degree of methane conversion 

reaches 95%, yields of hydrogen and carbon monoxide - 
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46.4 and 40.0%, respectively. 

The catalysts were tested by the BET method. The results 

are shown in Table I. As seen from the table, the texture of 

the catalysts are not very different from each other. 

The specific surface area of nickel catalyst modified with 

lanthanum oxide is 163 m
2
 / g. 

However, the addition of cerium and lanthanum oxides 

increases the resistance of a nickel catalyst to coke 

deposition (Fig. 4). 

 

 

 

 

 

 
 
 

 

 
 

 
 

 

 
 

Fig. 4. SEM micrographs. 
 

As seen in Fig. 4, after 30 hours of testing in the 

oxidation of methane on Ni / γ-Al2O3 catalyst surface is 

formed of carbon filaments. Modified by cobalt sample was 

also subjected to carbonization. While the introduction of 

cerium oxide and / or lanthanum oxide in the Ni / ɣ-Al2O3 

catalyst lowers the carbonization of catalyst. 

Oxides of aluminum and silicon have been studied in 

dimerization of methane to ethylene in the reaction 

condition: ratio of CH4: O2 = 2: 1, W = 2000 h
-1

 and Tr = 

700-850
о 
С. The results are shown in Table II. 

 
TABLE II: INFLUENCE OF REACTION TEMPERATURE ON THE ACTIVITY OF 

OXIDES  

Oxides 
Т,оС 

Concentration, vol. % 

 Н2 С2Н4 СО СО2 

SiO2 700 - 4.5 15.8 14.5 

 750 0.96 4.8 17.2 13.3 

 800 2.5 4.5 14.3 16.3 

 850 4.1 4.2 12.3 18.4 

Al2O3 700 1.2 4.1 6.6 26.4 

 750 4.5 4.2 6.9 22.6 

 800 7.9 4.3 8.1 21.5 

 

As seen from the table, the reaction temperature and the 

nature of the oxides are not greatly affect the composition of 

the reaction products. Over the silicon and aluminum oxides 

formed hydrogen, ethylene, and carbon oxides. On SiO2 

with increasing reaction temperature is increasing hydrogen 

and carbon dioxide concentration. Ethylene and carbon 

dioxide outputs decrease with increasing temperature 

passing through a maximum at 750
o
C. 

On alumina with an increase in reaction temperature is an 

increase in the yield of hydrogen, carbon monoxide and 

carbon dioxide concentration decrease from 26.4 to 21.3 

vol. %. Maximum ethylene concentration 4.8 vol. % is 

observed at 750oC on silica. 

Further oxides was supported by tungsten heteropoly acid 

(HPA) with a concentration of 3 wt. %. Note that with the 

application of HPA selectivity to ethylene is increased, the 

highest yield of ethylene (5.9 vol. %) is observed over the 

catalyst HPA / Al2O3. 
 

IV. CONCLUSION 

Thus, changing the catalyst composition and the 

conditions of the oxidation of methane can obtain valuable 

products as synthesis gas, and ethylene. Supporting of 

tungsten heteropoly acid on alumina leads to improved 

selectivity on ethylene. 

For the process of partial oxidation of methane to 

synthesis - gas was developed an effective 3% NiO + 2% 

La2O3 / ɣ-Al2O3 catalyst. Based on the study of the complex 

physical and chemical methods (XRD, SEM and BET) 

found that modification of NiO / Al2O3 by lanthanum oxide 

provides a selective, resistant to carbonization catalyst.  

It is shown that during the modifying the catalyst by 

la2o3 the new phases formed, raised the dispersity of the 

catalyst and decreased the temperature of reduction of 

nickel oxide.  

It is found that the catalyst of 3% nio + 2% la2o3 / ɣ-

al2o3 for 250 hours under laboratory conditions (ch4: o2 = 

2: 1, tr = 750oc and w = 1000 h-1) does not lose its activity. 

Further work will focus on the test of developed catalyst 

(3% NiO + 2% La2O3 / ɣ- Al2O3) in a pilot plant under real 

conditions of the partial oxidation of methane to synthesis 

gas.  
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