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Abstract—In spite of much work done in mapping between 

the process parameters and performance indicators of 

electrochemical micro-machining (EMM), very sparse research 

is available on the optimization of its process parameters. In this 

article, first, an ANN trained using a hybrid Simulated 

Annealing (SA) – Levenberg-Marquardt (LM) is developed to 

map between the process parameters (voltage, feed-rate, and 

pulse-on time) and performance indicators (inlet and outlet 

diameters) of EMM. Once the prediction capabilities of the ANN 

are verified by the use of several testing data sets, the trained 

ANN is then used as a fitness function to optimize the process 

parameters of EMM that would lead to the minimization of 

taper and overcut. The optimization of the process parameters 

was accomplished using a Genetic Algorithm (GA) based 

approach. The prediction model was further validates by 

comparing the tendencies seen in the prediction model to those 

obtained using partial correlation coefficient. 

 
Index Terms—Electrochemical micro-machining (EMM), 

genetic algorithm (GA), levenberg-marquardt (LM) algorithm, 

simulated annealing (SA). 

 

I. INTRODUCTION 

The demand for micro-products and components has been 

rapidly increasing in the electronics, optics, medicine, 

biotechnology, automotive, communications and avionics 

industries [1]. Micromachining refers to the removal of 

material with thickness ranging from 1 to 999 μm [2]. 

Methods include micro-electro discharge machining (micro 

EDM), electrochemical micro-machining (EMM), micro 

ultrasonic machining (micro USM), laser machining and 

others. In EMM, the metal workpiece is the anode, and the 

tool is the cathode; the electrolyte flows between the anode 

and cathode. A pulsed, direct current is applied to ensure 

localization of electrolysis dissolution. The cathode, moves 

several micro-meters away from the anode then discharges. 

According to Faraday’s laws, which control the workpiece 

dissolution, a workpiece with desired shape or size can be 

obtained. EMM has many advantages over traditional 

material removal operations such as low tool wear, low heat, 

 
Manuscript received September 18, 2016; revised January 17, 2017.  

P. Zou is with Donghua University, Songjiang, District, Shanghai 

201620, China (e-mail: zoupzp123@gmail.com). 

M. Rajora and S.Y. Liang are with Georgia Institute of Technology, 

Atlanta, Ga, 30332, USA (e-mail: manikrajora@gmail.com, 

steven.liang@me.gatech.edu).  

M. Ma,  H. Chen, and W. Wu are with Metal Industries Research & 

Development Center, Taichung 207 Taiwan, ROC (e-mail: 

mmy@mail.mirdc.org.tw, hyc@mail.mirdc.org.tw, 

hyc@mail.mirdc.org.tw). 

and the absence of stress, however, the complexity of EMM 

mechanism makes the modelling between the controllable 

process parameters and the required performance indicators 

very difficult. Therefore, a suitable selection of process 

parameters in EMM process relies greatly on the operator’s 

skill and experience because of the numerous possibilities of 

process parameters combinations. To solve this problem, 

researchers have designed different experimental settings 

[3]-[8] and tried numerous types of analysis methods, such as 

regression models and correlation analysis [9], [10], to map 

the relationship between the process parameters and the 

performance indicators. 

The rapid development intelligent techniques and the 

availability of better computational capabilities bring more 

potential and new directions to many engineering fields. 

Among them, Artificial Neural Networks (ANN’s) have 

become a widely used method for building prediction models 

between controllable process parameters and the required 

performance index. H. H. Abuzied, M. A. Awad and H. A. 

Senbel [11] developed a multi-layer feedforward network 

prediction model of resulting surface roughness and material 

removal rate in Electrochemical Machining (ECM) process 

based on the related process parameters. In the work of Z. Li 

and H. Ji [12], an ANN was utilized to predict the machining 

accuracy of aero-engine blade in ECM based on five main 

process parameters. P. Asokan, R. Ravi Kumar, etc. [13] 

tested multiple regression models and ANN model, and the 

comparison results showed that NN had superior prediction 

capabilities compared to the regression models. Though much 

work has been done in the experimental investigation of the 

process of EMM and researchers have also developed 

numerous models relating the process parameters and the 

performance indicators, very few researchers have considered 

optimal process parameter selection in EMM. The selection 

of optimal process parameter in EMM can increase the quality 

of the finished product and also decrease the number of 

unsatisfactory products created thereby decreasing 

manufacturing costs and increasing customer satisfaction. 

Currently, the selection of optimal process parameters is 

done using a blanket search method which can be extremely 

time-consuming. In order to overcome these issues, an ANN 

model is developed to model the relationship between the 

controllable process parameters (voltage, pulse on time and 

feed rate) and the performance index (internal diameter and 

outer diameter) based on experimental data. The training of 

the ANN was performed using a hybrid Simulated Annealing 

(SA) – Levenberg Marquardt (LM) algorithm in order to 

overcome the drawbacks of Gradient Descent (GD) algorithm 
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that is commonly used to train the ANN. Once the prediction 

capabilities of the ANN were validated, it was then used to 

find the optimal process parameter combination that would 

lead to the minimization of taper and overcut. 

The rest of the paper is organized in the following manner: 

Section II describes the experimental setup while Section III 

describes the ANN modeling technique and the GA based 

optimization approach. Section IV presents and discusses the 

results obtained after the training of the ANN, optimization of 

the process parameters, and the partial correlation analysis. 

Section V develops some conclusions based on the results 

presented in Section IV. 

 

II. EXPERIMENTATION 

A. Experimental Setup 

Fig. 1 schematically depicts the EMM experimental setup. 

The system consists of a three-dimensional movement device, 

a small-scale power supply of 100 A, and an electrolyte pump 

and filter. The feeding system is controlled by a PC-Based 

CNC Controller, RTX real-time windows kernel program, 

and a motion card that drives the linear motor precisely. A 

pulse generator supplies a periodic current to the 

experimental model. A digital oscilloscope ensures that the 

pulse generator produces a rectangular waveform with 

accurate amplitude. If the tool feed rate is excessive, the tool 

will contact the workpiece and cause a short circuit; thus, an 

oscilloscope is employed to detect any short circuits. 

Whenever the oscilloscope detects a short circuit, a signal is 

sent rapidly to the PC and the tool is extracted automatically 

until the measured voltage returns to the applied voltage. The 

micro array holes electrode module includes the multiple 

nozzle tool electrodes, PVC mask and tool fixture. The 

electrolyte is pumped to a multiple electrode cell and exits 

through the small nozzle in the form of a free standing jet 

directed towards the anode workpiece.  
 

 
 

 
Fig. 1. Schematic diagram of electrochemical micromachining system (top) 

and micro array hole electrode module (bottom). 
 

Other basic information and settings are as follows: the 

electrolyte velocity was 10 m/sec, electrolyte temperature was 

27 ℃, the initial gap between the tool and the workpiece was 

100 µm, tool moving distance was 800 µm, the workpiece 

material was SUS 304, the electrolyte used was 10% wt. 

NaNO3, the nominal diameter of the hole was 900 µm, and the 

depth of the hole was 500 µm. 

Voltage, pulse on time, and feed rate were used as the 

controllable process parameters, while the inner diameter of 

the micro-hole Din and the outer diameter Dout were the 

measurable performances. The range of each process 

parameter is shown in Table I. The range of the variables was 

fixed by taking into consideration two factors: 1. limitation of 

the devices used for EMM and 2. making sure that the 

experimental conditions would be stable within the chosen 

range. The resolution of the process parameters were was 0.1 

V for the voltage, 0.1 µs for pulse on time, and 0.1 µm/s for 

the feed rate. This indicates that there are close to 3 million 

possible combinations of all the process parameters. 

Therefore, the proposed method was applied for this 

particular case study. 
 

TABLE I: ORIGINAL RANGE OF THE CONTROLLABLE PROCESS PARAMETERS 

Process parameter Voltage (V) 
Pulse on 

time (µs) 

Feed rate 

(µm/s) 

Lower bound 8 25 4 

Upper bound 20 70 12 

 

The process of EMM has two responses i.e. taper and 

overcut. When drilling micro-size holes in thin metallic foils, 

a major requirement is for the holes to have straight walls. The 

straightness of the wall can be represented by the Taper and is 

given by: 

The process of EMM has two responses i.e. taper and 

overcut. When drilling micro-size holes in thin metallic foils, 

a major requirement is for the holes to have straight walls. The 

straightness of the wall can be represented by the Taper and is 

given by: 
 

in outTaper ( ) / depthD D                           (1) 

 

In critical applications, particularly in micro instruments, 

the straightness of a drilled hole is also very important. 

Overcut, as given by equation (2), is the difference between 

the aim holes’ diameters and actual hole diameter and is a 

good representation of the straightness of a drilled hole. A 

small overcut value represents a more precise EMM process. 
 

inOvercut ( ) / 2D D                             (2) 

 

In order to create a forward prediction model for the 

process of EMM, three different sets of experiments were 

created. In the first experimental set, voltage and feed rate had 

3 levels each while pulse on time was constant which resulted 

in a total 9 combinations of input parameters. These 

combinations of input experiments were used to perform the 

process of EMM and for each combination Din and Dout were 

recorded. In the second and the third experimental sets 

voltage, pulse on time, and feed rate had 3 levels each which 

resulted in 27 combinations of input process parameters for 

both experimental sets 2 and 3. The process of EMM was 

performed using the combination of inputs and the Din and 

Dout were again recorded. The levels of voltage, pulse on 
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time, and feed rate are given in Table II. 
 

TABLE II: LEVELS OF VOLTAGE, PULSE ON TIME, AND FEED RATE VALUES 

USED FOR THE THREE EXPERIMENTAL SETS 

Experiment 

Set # 

Levels of Voltage 

(V) 

Levels Pulse 

On Time (µs) 

Levels Feed Rate 

(µm/s) 

1 [16, 18, 20] 25 [4, 6, 8] 

2 [4, 6, 8] [50, 60, 70] [8, 10, 12] 

3 [4, 6, 8] [50, 60, 70] [8, 9, 10] 

 

In the experiments, Charge Coupled Device (CCD) camera 

was utilized to measure all the workpieces after the process of 

EMM. Fig. 3 shows the pictures taken with the CCD camera. 

The CCD images were then processed through a software 

which provided the average value to the diameters of the holes 

on the front and the backside of the workpiece. 

 

 

 

 

 

 

            a.                  b.  
Fig. 1. Pictures taken using the CCD camera. 5a. shows the front side of the 

workpiece while 5b. shows the backside of the workpiece. 

 

III. MODELING AND OPTIMIZATION 

A. Forward Prediction Modelling 
 

Pulse-on time

Voltage

Feed-Rate

Din

Dout

Input Layer Hidden Layer Output Layer

i

 
Fig. 2. Neural Network Structure used for prediction of outputs. 

 

ANNs [14] are widely used as modeling tools in different 

engineering fields due to their ability to map from one 

multivariable space of information to another. They are able 

to approximating functions to the desired degree of accuracy 

and unlike physics based models, the shape of the 

approximation function does not need to be assumed before 

training. An ANN as seen in Fig. 2, consists of a number of 

input, hidden, and output neurons that interact with each other 

via weighted connections. The ANN’s can be trained to 

accurately predict outputs when provided with input values by 

changing the values of the weighted connections. During the 

training process of the ANN, the ANN is provided with a set 

of input and outputs called the training set and the weights of 

the ANN are changed with aim of minimizing the mean 

squared error (MSE), as given by equation (3), for the training 

set. In this case study, the inputs of the ANN were pulse-on 

time, voltage, and feed-rate while the outputs were Din and 

Dout. 
 

 
2

,actual ,predicted

1

1 N

i i

i

MSE y y
N 

                        (3) 

 

where, yi,actual  is the actual output and yi,predicted is the output 

predicted by the ANN. 

Gradient Descent (GD) is a commonly used algorithm to 

train the ANN due to its ease of implementation, 

computational simplicity, and good results obtained for a 

large number of problems in different. In GD the weights are 

adjusted backwards, from the output layer towards the input 

layer. As the name implies, GD is a gradient based algorithm, 

therefore, depending on the starting point it might converge to 

the local minima instead of the global. Another drawback of 

GD is that it is relatively slow when close to the minima. The 

results obtained by gradient descent can be further improved 

by considering both the gradient of the error surface as well as 

the curvature information. In order to overcome these 

drawbacks, the ANN is trained using a hybrid SA-LM 

algorithm. Equations (4) and (5) show that GD only relies 

upon the gradient of the error surface. SA is a metaheuristic 

algorithm is able to avoid local minima and move global 

minimum while LM, a gradient based algorithm, a variation of 

gradient descent, is able to converge towards the global 

minimum. 

1) Simulated annealing 

Simulated annealing is a stochastic optimization technique 

for nonlinear programming that resembles the physical 

phenomenon of cooling metals in which atoms move from a 

random state to a maximally organized state. The steps of 

simulated annealing are outlined below [15]: 

1. Initialize temperature T, iterations I = 0, i =1, maximum 

number of points at constant T, N, and M iteration limit. 

2. Generate a random feasible point xo and evaluate the 

fitness function f at the initial point, f(xo).  

3. Move a set distance in a random direction from the initial 

point and evaluate the function at the new point, f(x1).  

4. If f(x1) < f(xo) then x1 becomes the new point. If f(x1) > 

f(xo) then x1 is accepted as the new point based on an 

acceptance function given by Equation (5) 

   1 0

1

1 exp

P
f x f x

T


 

  
 

                            (5) 

5. If i < N and the new point is accepted then i = i + 1 

otherwise reduce the temperature. If I < M then I = I + 1, i = 1. 

The ability to accept worse points allows the algorithm to 

move out of valleys containing the local minima’s and search 

surrounding valleys for better solutions. As it can be seen 

from equation (6), the probability to accept worse solutions 

decreases as the number of iterations increases, thereby 

allowing the algorithm to converge towards the minima of the 

valley it is located in. 

2) Levenberg-Marquardt 

Levenberg Marquardt is a variation of GD that has the local 

search capabilities of Gauss Newton and the error reduction 

of GD algorithm and shown the ability to outperform GD in a 

variety of problems [16]-[18]. The weights of the ANN are 

updated using Equation (6) [19] 

 
1

1

T

k k k k k kw w J J I J e


                             (6) 

T

k kH J J I                                       (7) 

where, Jk is the an approximation of the Jacobian of the MSE, 
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H is the Hessian of the MSE, and µ is a parameter whose value 

decreases when the error decrease in order to reduce the 

influence of the gradient and increases if the error increases. 

Equations (6) and (7) show that LM algorithm uses 

information about the gradient of the error surface and the 

curvature, without actually calculating the curvature, in order 

to update the weight values. 

The number of experimental data group is 63, which means 

this is a small sample data analysis problem and overtraining 

of the ANN needs to be avoided when dealing with small 

sample data. Overfitting usually occurs when a model 

describes random error or noise instead of the underlying 

relationship. The potential for overfitting problem will 

increase when the number of training data is not far more the 

number of parameters, which may lead a poor predictive 

performance of the neural network model. Additional 

techniques, such as cross validation, regularization, early 

stopping, are very necessary with the aim of avoiding 

overfitting.   

The data set provided were divided into training (45), 

validation (13), and testing (5) sets. The weights were first 

trained using SA with the objective of minimizing the MSE 

for the training set. The set of weight values from training 

procedure that provided the smallest MSE for the validation 

set were used as a starting point for LM. LM was then used to 

further improve these weight values with the objective of 

minimizing the MSE of the training set. The set of weights 

that provided the least MSE for the validation set were used as 

the final weight values for the ANN. The success of the 

training was measured by using the ANN to predict the 

outputs for the testing set and calculating the relative error 

between the actual output and the predicted out. 
 

 
Fig. 3. Structure Flow Diagram of the Hybrid SA-LM-BP Network Training 

[20]. 
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Fig. 4. Structure of the hybrid ANN-GA optimization approach in EMM 

process. 

B. ANN-GA Based Optimization Approach 

In the ANN-GA based optimization approach, ANN was 

used as the fitness function and GA was employed to search 

for the best process parameter combination that would 

minimize the taper and overcut. The structure of the ANN-GA 

optimization approach is shown in Fig. 4. 

The steps of GA are outlined below: 

1. Create a random initial population. 

2. Create a new generation of individuals by using the 

current population using the following steps: 

a. Calculate the fitness value of each individual of 

the current population 

b. Select parents from these individuals based on 

their fitness value. 

c. Select elite children, individuals with the lower 

fitness values that will be individuals of the next 

generation. 

d. Produce children for the next generation from 

parents using either crossover or mutation. 

3. Repeat step 2 until a stopping criteria is satisfied.  

In the process of EMM, the aim is to find the set of process 

parameter combinations that will minimize both taper and 

overcut. Though EMM has two responses i.e. taper and 

overcut, for the purpose of this case study, the two responses 

were combined into a single-objective by the use of weight 

values as given by Equation (8). 

1 2Objective = taper + overcutw w         (8) 
 

The weight values w1 and w2 can be assigned in accordance 

with the emphasis of each objective. 

 

IV. RESULTS AND ANALYSIS 

A trial-and-error based approach was used to determine the 

best structure of the ANN that best generalized the data. The 

ANN structure that gave the lowest MSE for the training and 

the validation set was chosen as the structure to represent the 

relationship between the inputs and the outputs. During the 

training procedure of the ANN, SA was first used to train the 

weight values and the number of iterations for SA was 100. 

Once the training using SA had been completed, LM was used 

to further train the ANN weight values for another 1000 

iterations. The activation function used for the hidden layers 

was tangent sigmoid while the activation function of the 

output layer was just a linear function.  As it can be seen from 

Table III, an ANN structure of 3-5-2 gave the lowest MSE for 

both the training and the validation set. The 3-5-2 structure 

also had one of the lowest mean absolute percentage error 

(MAPE) for the test sets. Fig. 5 shows the relative error 

between the predicted and the actual values obtained using the 

best ANN structure for each of the data points in the test set. 
 

TABLE III: MSE OF THE TRAINING SET AND VALIDATION SET AND THE 

MAPE OF THE TESTING SET OBTAINED USING DIFFERENT ANN 

STRUCTURES 

Structure 
MSE of 

training set 

MSE of 

validation set 

MAPE of 

testing set 

3-3-2 0.15 0.09 0.24 

3-4-2 0.12 0.09 0.21 

3-5-2 0.11 0.08 0.19 

3-6-2 0.11 0.10 0.20 

3-7-2 0.12 0.13 0.21 

3-3-3-2 0.11 0.10 0.20 

3-4-4-2 0.16 0.15 0.25 
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3-5-5-2 0.25 0.15 0.32 

3-6-6-2 0.12 0.11 0.19 

3-7-7-2 0.12 0.14 0.21 

 

An important thing to notice is that in Fig. 5, all the relative 

errors are below 6% for the test sets. This information along 

with the fact that the MSE obtained for the training and 

validation sets using the best ANN structure were extremely 

low indicates that the hybrid SA-LM algorithm used to train 

the ANN was able to avoid converging to local minima’s and 

was able to not only learn the underlying relationship in the 

training data set but it was also able to generalize the outputs 

for the test set with a high degree of accuracy.  

Next, the trained ANN was used as the fitness function of 

GA in order to minimize the value of taper and overcut in 

accordance with equation (8). Table IV shows the settings of 

the GA algorithm and Table V shows the optimal process 

parameters and their corresponding taper and overcut values 

obtained after optimization. 

 

 
Fig. 5. Relative error between the predicted and actual outputs of the test set. 

TABLE IV: PARAMETER SETTING OF HYBRID ANN-GA APPROACH 

No. of hidden 

layer 

No. of neurons Initial population Crossover rate Mutation rate Elite count Weight value 

w1 

Weight value 

w2 

1 4 20 0.8 0.1 1 0.5 0.5 

Range of Voltage (V) Range of Pulse On Time (µs) Range ofFeed Rate (µm/s) 

[8, 20] [25,70] [4,12] 

 
TABLE V: THE OPTIMAL RESULT OF THE HYBRID ANN-GA APPROACH 

Optimal Process Parameter Predicted Value Calculated Value 

Voltage 

(V) 

Pulse On Time 

(µs) 

Feed Rate 

(µm/s) 

Predicted Din 

(µm) 

Predicted Dout 

(µm) 

Corresponding 

Taper 

Corresponding Overcut 

(µm) 

15.4 37.8 6.9 902.92 899.78 0.01 1.46 

 

The results in Table V show that optimized input process 

parameters gave a taper and overcut value of 0.01 and 1.46 

µm respectively. The taper value obtained after optimization 

(0.01) was very close to the best taper value available in the 

experimental data (0) but the optimal Din and Dout (902.92 µm 

and 899.78 µm respectively) that gave the taper value of 0.01 

were much better than the Din and Dout (783.25 µm and 783.25 

µm respectively) that gave the best taper value of 0 in the 

experimental data. The optimal overcut value of 1.46 µm was 

better than the best overcut value of 2 µm available in the 

experimental data set. These results show that the 

optimization technique was able to find the combination of 

process parameters that would lead to much better 

performance indicators that those present in the experimental 

data. 
 

V. CONCLUSION 

In this paper, a mapping from the input parameters to the 

performance indicators for the process of EMM was 

accomplished using an ANN. In order to avoid premature 

convergence, a hybrid SA-LM algorithm was used to train the 

ANN. The 3.57% MAPE for the testing set showed that the 

trained ANN was able to predict outputs for unseen data 

points with a very high degree of accuracy. The trained ANN 

was then used as a fitness function for find the optimal values 

of the input process parameters for the process of EMM that 

would lead to a small value of taper and overcut. The Din and 

Dout obtained after optimization were much close than any Din 

and Dout available in the experimental data to the desired Din 

and Dout value of 900 µm and the corresponding taper (0.01) 

and overcut (1.46 µm) were either better or quite close to the 

best values seen in the experimental data. The accuracy of the 

trained ANN model was further verified by comparing the 

tendencies observed in the experimental data and other 

literature to the tendencies of the ANN model. The results 

showed that the tendencies observed in the trained ANN 

model, the experimental data, and the literature were all very 

similar. These results along with the low MAPE of the testing 

data set prove that the ANN trained using the hybrid SA-LM 

algorithm was able to avoid premature convergence to local 

minima and was able to correctly map the relationship 

between the process parameters and the performance 

indicators. The optimization results show that GA would be a 

much better technique to be used in the future for optimization 

of process parameters instead of a blanket search method or a 

trial-and-error based method. The availability of the 

prediction and optimization model may bring more efficient 

and effective way to the research of EMM process without 

knowing much about inner mechanism of EMM itself.  

Future work in this area would include development of 

better training techniques for ANN that would reduce the 

computation time and further increase the prediction accuracy. 

One possible ways to increase the prediction accuracy would 

be to combine the ANN with a physics-based model. The 

physics-based model would also be helpful in understanding 

the mechanisms of EMM and this understanding would also 

help with the optimization of process parameters. 
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