
  

  
Abstract—In order to generalize the Kelvin-Voigt model 

describing viscoelastic solids, we present a constitutive equation 
with distributed order derivative. Using the Laplace transform 
and its numerical inverse, we consider the creep compliance, 
creep recovery, relaxation modulus, and stress response to 
harmonic deformation. The results show that the constitutive 
equation indeed characterizes viscoelastic solids and is a 
generalization of the Kelvin-Voigt model. Meanwhile, we 
discuss the effect of the modelling parameter on viscoelasticity. 
 

Index Terms—Constitutive equation, distributed order 
derivative, fractional calculus, response. 
 

I. INTRODUCTION 
Viscoelasticity is the property of materials that exhibit 

both viscous and elastic characteristics when undergoing 
deformation. Many polymers and biological tissues exhibit 
such a behavior. In recent decades, the viscoelasticity theory 
has developed considerably partly because of the wide use of 
polymers in various fields of engineering. Also viscoelastic 
materials are extensively applied to cushion shock, from 
running shoes to packing materials. 

According to the linear viscoelasticity theory, the 
viscoelastic body can be considered as a linear system with 
the stress )(tσ  (or strain )(tε ) as the excitation function 
(input) and the strain )(tε  (or stress )(tσ ) as the response 
function (output). In this respect, the response functions to an 
excitation expressed by the Heaviside unit step function )(tΘ  
are known to play a fundamental role both from a 
mathematical and physical point of view. 

We denote by )(tJ  the strain response to the unit step of 
stress and by )(tG  the stress response to a unit step of strain. 
The functions )(tJ  and )(tG  are usually referred to as the 
creep compliance and relaxation modulus respectively, or, 
simply, the material functions of the viscoelastic body. In 
view of the causality requirement, both functions are 
vanishing for 0<t . For +∞<<0 t , )(tJ  is a nondecreasing 
function and )(tG  is a nonincreasing function. 

The limiting values of the material functions for +→ 0t  
and +∞→t  are related to the instantaneous (or glass) and 
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equilibrium behaviours of the viscoelastic body, respectively. 
As a consequence, it is usual to call )(0+J  the glass 
compliance, )(+∞J  the equilibrium compliance, and )(0+G  
the glass modulus, )(+∞G  the equilibrium modulus. They 
satisfy the relations 

),(1/=)(),(01/=)(0 +∞+∞++ GJGJ             (1) 

for linear viscoelastic material models [1]-[3]. Generally one 
may define a fluid if it can creep indefinitely under constant 
stress, namely when it relaxes to zero under constant 
deformation. In contrast, viscoelastic solid means its 
equilibrium compliance is finite, i.e. its equilibrium modulus 
is nonzero. 

Fractional calculus has been applied to mathematical 
description of real problems arising in different fields of 
science and engineering, such as viscoelasticity, anomalous 
diffusion, control theory, etc [2]-[9]. It is capable for 
describing memory and hereditary properties of various 
materials and processes. In viscoelasticity theory, fractional 
calculus has been used to establish constitutive equations 
conveniently and effectively [2]-[7], [10]-[14]. 

Let )(tf  be piecewise continuous on )(0,+∞  and 
integrable on any finite subinterval of )(0,+∞ . Then the 
Riemann-Liouville fractional integral of )(tf  of order β  is 
defined as 
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where β  is a positive real number, and )(⋅Γ  is Euler’s 
gamma function. For complementarity, we define 

)(=)(0
0 tftfJ t . 

Let α  be a positive real number satisfying mm ≤− α<1  
and +∈m , where +  is the set of positive integers. Then 
the Riemann-Liouville fractional derivative of )(tf  of order 
α  is defined, when it exists, as 
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Scott-Blair [4], [15] proposed a fractional constitutive 
equation )(=)( )( tEt αεσ , where E  and α  are 
material-dependent constants and 1,<<0 α  to characterize 
a viscoelastic material whose mechanical properties are 
intermediate between those of a pure elastic solid (Hooke 
model) and a pure viscous fluid (Newton model). In the 
monographs [1], [2], this relation was called as the 
Scott-Blair model. In [6], a fractional calculus element whose 
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constitutive law obeys stress is proportional to a fractional 
derivative of strain is said to be a spring-pot. 

Different fractional constitutive equations have been 
proposed, such as the fractional Maxwell, Kelvin-Voigt, and 
Zener models by replacing Hooke’s and Newton’s classical 
elements by the Scott-Blair element [11]-[14], [16], [17]. 

The Kelvin-Voigt model for viscoelastic body consists of a 
spring and dashpot in parallel. The constitutive equation 
reads 

),()(=)( ttEt εηεσ +                         (4) 

from which the creep compliance and the relaxation modulus 
are derived  

),(11=)( /ηEte
E

tJ −−                            (5) 

and  
),()(=)( ttEtG ηδ+Θ                          (6) 

respectively, where )(tΘ  is the Heaviside unit step function 
and )(tδ  is the Dirac delta function. The finite equilibrium 
compliance and the nonzero equilibrium modulus  

,=)(,1=)( EG
E

J +∞+∞  

mean the viscoelastic body is solid-like. 
In [18], a generalized constitutive equation with the 

distributed order derivative  

,)(=)( )(1

0
αετσ αα dtEt ∫                        (7) 

is introduced. Seemingly, the Hooke model and the Newton 
model, which are expressed by terms of strain and its 
derivative respectively, are interpolated on the right hand 
side of (7), and (7) is a generalization of the Kelvin-Voigt 
model (4). But the model (7) does not characterize 
viscoelastic solids since the equilibrium compliance and the 
equilibrium modulus are proved out to be   

0.=)(,=)( +∞+∞+∞ GJ                        (8) 

In this article, we propose the constitutive relation with 
distributed order derivative  

.)()(=)( )(1

0
αετεσ αα dtEtEt ∫+                     (9) 

We show that this constitutive relation characterizes 
viscoelastic solid and is a real generalization for the 
Kelvin-Voigt model. 

In next section, we investigate the creep compliance, 
creep-recovery, relaxation modulus, energy dissipation or 
hysteresis under periodic deformation, etc. by using the 
constitutive equation (9). 

 

II.  RESPONSE ANALYSIS AND SIMULATION 
We examine the creep compliance, creep recovery, 

relaxation modulus, and stress response to harmonic 
deformation for the constitutive relation (9) and consider the 
effects of the parameter τ  to the material functions. 

Applying the Laplace transform to (9) and then integrating 
with respect to α  yield  
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In this article, we use the following definition and notation 
of the Laplace transform of function )(tf  
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If we take ( ) = ( )t tσ Θ , the Laplace transform of creep 
compliance )(tJ  is obtained   

.
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From the initial value and final value theorems, we have   
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Note that no instantaneous elastic deformation is possible, 
but the model undergoes finite creep like the Kelvin-Voigt 
model. We calculate the inverse Laplace transform of (12) 
numerically by the algorithm and the MATHEMATICA 
subroutine presented in [19]. 

 

 
Fig. 1. Curves of creep compliance ( )J t  for = 1E  and for = 0.2τ  (solid 

line), = 1τ  (dot line) and = 5τ  (dash line). 
 

In Fig. 1, we display the curves of creep compliance )(tJ  
for 1=E  and for 0.2,1=τ  and 5. The values of τ  can 
represent the strengths of elasticity and viscosity of material. 
For 0.2=τ , the model shows stronger elasticity while for 

5=τ , the stronger viscosity is reflected. 
We examine the creep recovery response by removing the 

load suddenly. Thus the applied stress can be expressed as 
).()(=)( Tttt −Θ−Θσ  Its Laplace transform is 

).(11=)( Tse
s

s −−σ  We obtain the Laplace transform of creep 

recovery response   
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In fact, the creep recovery response is  

),()()(=)( TtTtJtJt −Θ−−ε                    (15) 

where the final value is 0.=)(+∞ε  The model exhibits an 
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eventually complete creep recovery. In Fig. 2, we display the 
curves of creep recovery response )(tε  for 1=E , 4=T  and 
for 0.2,1=τ  and 5. 

Next, we examine the relaxation modulus by taking the 
unit step strain )(=)( tt Θε . The Laplace transform of 
relaxation modulus )(tG  takes the form   

 .
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+                     (16) 

The initial value and final value of relaxation modulus 
)(tG  are given as   

 

 
Fig. 2. Creep recovery responses ( )tε  for = 1E , = 4T  and for = 0.2τ  (solid 

line), = 1τ  (dot line) and = 5τ  (dash line). 
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The model affords a nonzero equilibrium modulus like the 
Kelvin-Voigt model and presents equilibrium elasticity. In 
Fig. 3, We plot the curves of the relaxation modulus )(tG  
versus t  for 1=E  and for 0.2,1=τ  and 5. For large value 

5=τ , stress relaxes slower, which means stronger viscosity. 
 

 
Fig. 3. Curves of the relaxation modulus ( )G t  for = 1E  and for = 0.2τ  

(solid line), = 1τ  (dot line) and = 5τ  (dash line). 
 

Finally, we investigate the stress response to harmonic 
strain )(sin=)( tt ωε . The Laplace transform of stress 
response is   

.
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Fig. 4. Stress-strain hysteresis loop for = 1E , = 2ω π  and = 2ω π . 

 
In Figs. 4–6, stress-strain hysteresis loops are shown for 

1=E , πω 2=  and for 0.2,1=τ  and 5, respectively. Phase 
difference between stress and strain is obvious, which means 
hysteresis and energy dissipation. The three figures display 
that for the three values of τ , as τ  increases, more energy is 
dissipated and so viscosity becomes stronger. 

 

 
Fig. 5. Stress-strain hysteresis loop for 1=E  , πω 2=  and 1=τ . 

 

 
Fig. 6. Stress-strain hysteresis loop for 1=E , πω 2=  and 5=τ . 

 
We indicate that we examined the equation 

,)()()(=)( )(1

0
αετεηεσ αα dtEttEt ∫++ 

         (19) 

but in this model, the creep compliance and the relaxation 
modulus have the same initial values and final values as that 
in model (9). So model (9) is enough for our aim. 
 

III. CONCLUSION 
In this article, we present and investigate a generalized 

constitutive equation with distributed order derivative  
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.)()(=)( )(1
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Using the Laplace transform and its numerical inverse, we 
consider the creep compliance, creep recovery, relaxation 
modulus, and stress response to harmonic deformation. The 
results show that the constitutive equation characterizes 
viscoelastic solids and is a generalization of the Kelvin-Voigt 
model. The effect of the parameter τ  on viscoelasticity is 
displayed. All the figures are generated by using 
MATHEMATICA 8. 
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