
  
Abstract—Defects are an important indicator of project 

quality; moreover, eliminating defects is a key objective of 
project management. Therefore, using the appropriate 
analytical tools and methods, training and testing the defect 
data, and selecting the best algorithm for the defect feature are 
important. These steps can directly reveal the decision rules for 
each defect, and they can assist in determining key approaches 
to construction site management for effective defect prevention. 
In this study, a model obtained by using the chi-squared 
automatic interaction detection (CHAID) algorithm was 
validated, and its prediction benefits were calculated. A total of 
499 defect types were retrieved from the Public Construction 
Management Information System in Taiwan and used as the 
foundation of a statistical analysis of 990 construction projects 
with 17,648 construction defects. First, a cluster analysis of 
inspection scores and defect frequencies was performed to 
reclassify and establish a new grade. Next, five rules were 
established for using the decision tree to classify defects and 
inspection grades. Finally, results revealed that the prediction 
accuracy of the CHAID algorithm was 75.45%. The five rules 
can be used for defect management and prevention strategies. 
 

Index Terms—Decision tree, CHAID, defect, inspection 
grades.  
 

I. INTRODUCTION 
Defects are common phenomena in the construction 

industry, and may adversely affect the cost, duration, and 
resources of a project. Failures and defects can result in 
unnecessary expenditure and delays. Because construction 
defects generally occur when several associated causes 
combine, a thorough understanding of defect causality is 
required to systematically prevent construction defects [1]. 
Therefore, understanding the impact of defect causality is 
crucial for the development of strategies to prevent and 
reduce defects. 

Various methods have been proposed to analyze the causes 
of defects [2]-[5]. Among them, data mining (DM) is a 
procedure for extracting useful information from data, 
analogous to digging for an ore in a mine. Such information 
can reveal unexplained or undiscovered causal relationships 
[6]. 

In recent years, the construction industry has used DM 
techniques to analyze engineering defects to explore the 
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association rules of special value [7], [8]. DM is believed to 
have excellent potential for defect association analysis or 
prediction. 

The main purpose of DM is to detect, interpret, and predict 
qualitative and quantitative patterns in the data, thus yielding 
new information and knowledge. Several methods and 
algorithms, such as neural networks, support vector machines, 
and decision tree (DT), have been employed in DM to 
perform data classification and predictive modeling [9], [10]. 

Among the analysis methods for classification and 
prediction, DT have a structure that is easy to understand and 
explain, and a tree structure diagram is often used to solve a 
series of classification and decision-making problems for 
classifying numerous attributes and making predictions. DT 
can also be used for classification studies in engineering and 
management [11]-[17]. However, DT techniques have not 
been widely applied to defect data analysis. 

In Taiwan, the Mechanism of Public Construction 
Inspection has been implemented since 1993. Defect data 
related to project inspections are posted on the Public 
Construction Management Information System (PCMIS). 
These inspection data include the grades and defects related 
to project quality and management performance. Therefore, 
the relationship between inspection grades and defects is 
suitable for in-depth analysis and research. 

The construction inspection database of the PCMIS can be 
used as the analysis object. The DT chi-squared automatic 
interaction detection (CHAID) algorithm can be used to 
determine the classification rules by using the defects 
reported in the data. A construction management unit can 
develop appropriate management strategies to improve the 
project quality and performance. 

 

II. DATA SOURCE AND METHODOLOGY 
To improve the quality of public projects, Taiwan has 

established an effective quality management system so that 
all groups and members involved in construction tasks can 
ensure the quality of their works. In particular, to meet the 
quality standards and requirements in the construction 
process, systematic management, effective control steps, and 
attention to the construction quality are crucial. In 1993, a 
three-level quality management structure was formulated for 
the Public Construction Quality Management System, and 
the Quality Control System was established for contractors. 
Moreover, the Quality Assurance System was established by 
the procuring units, and the competent authorities established 
the Mechanism of Public Construction Inspection. 

The construction inspection in this study refers to the 
construction inspection records of the Level 3 quality control 
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implemented by the public construction surveillance units of 
the central and local governments. 

The public construction surveillance unit comprises 
experts and scholars (surveillance committee). The 
committee inspects the quality and progress of a project 
according to the Public Construction Quality Management 
System, relevant laws and regulations and the project 
contract, and the reference standard of the construction 
inspection work. 

Members of the surveillance committee are dispatched for 
construction inspection. On the inspection day, the 
committee visits the construction site to inspect the scene, 
listen to briefings, review relevant documents, and host a 
quality review meeting. During the meetings, the surveillance 
committee notifies both the procuring unit and the contractor 
regarding the evaluation of any defects and provides the 
project team with an opportunity to clarify and resolve these 
defects. Finally, the committee itself hosts a meeting to 
summarize the inspection findings and determine the score 
and inspection grades, which are then published in the 
PCMIS administered by the procuring unit. 

The score of a construction inspection is calculated based 
on the average of the scores of all surveillance committees, 
and is divided into four grades: S (90–100 points), A (80–89 
points), B (70–79 points), and C (less than 70 points). High 
inspection grades and scores generally indicate that a project 
has an excellent quality management system, high 
construction quality, well-managed progress, and sound 
planning and design. That is, higher scores reflect better 
performance in project management. 

Since the implementation of this construction inspection 
mechanism in Taiwan, numerous inspection records of public 
projects have been accumulated. The inspection content is 
divided into four categories, namely, Quality Management 
System (A1, 113 defects), Construction Quality (B1, 356 
defects), Construction Progress (C1, 10 defects), and 
Planning and Design (D1, 20 defects). 

This study retrieved construction inspection records from 
the PCMIS. A total of 990 projects were sampled from 
January 2003 to October 2016; the sample included 499 types 
of defects and 17,648 defect frequencies. DM was performed 
to analyze the rules governing the relationship between the 
defects and inspection grades. The CHAID algorithm, which 
is suitable for the construction inspection database, was 
selected for conduct the DM. Thus, the rule sets for defect 
classification were established. 

Before performing DM, the data must be preprocessed 
according to the characteristics of the algorithm. First, 
statistical analysis revealed that the numbers of S (0.6%) and 
C (0.2%) inspection grades were significantly lower than 
those of A (77.1%) and B (22.1%) grades. The unbalanced 
nature of the data may be problematic if DT classification is 
performed directly. That is, no significant difference will be 
observed, even if the number of cohorts is small [18]. 

Therefore, a cluster analysis was first conducted to regroup 
the sample data by inspecting the score and defect frequency 
to mitigate the variance of sample sizes for various inspection 
grades, thereby ensuring the accuracy and validity of the 
results. After obtaining the new grades, the data were 
randomly divided into training and test groups. 

The DT model for defects was then established, and the 
model was evaluated to determine its suitability for the defect 
database. In this study, the PCIMS construction inspection 
database was used to divide the data into training and test 
groups with proportions of 70% and 30%, respectively. The 
model obtained using the CHAID algorithm was used to 
verify. 

After completing the defect classification, a gain chart was 
used to assess the effectiveness of the classification model. 
Finally, the rules yielded by the classification can be used for 
defect prevention. 

A. Cluster Analysis Algorithm 
Cluster analysis, also known as affinity grouping, is a kind 

of unsupervised analysis. It divides data into groups, in which 
a high degree of affinity exits in the same group and apparent 
differences are present between different groups. A cluster 
analysis is employed to create groups and assist decision 
makings by pointing out common characteristics among 
groups.  

K-means is an algorithm frequently used in cluster analysis. 
A random selection of k seeds from the data is made in this 
algorithm according to the expected clusters (k) to be divided. 
These seeds will be the initial centers for the clusters, and 
once the k seeds are decided, the rest of the samples (p) will 
be assigned to the clusters in the nearest proximity. After that, 
the center of each cluster will be re-computed, the distance 
between each sample and the new cluster center be compared, 
and the clusters be regrouped. The whole process will be 
repeated again and again until the minimum SSE (sum of the 
squared errors) is reached. The calculation equation is shown 
as follows (1): 
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k is the number of cluster; p is the sample in the space 

group, mi the mean of the samples in the category of ci, and 
SSE is the sum of the squared errors of all the samples. 

First of all, in order to bring as close as possible the sample 
sizes in the inspection grades to create new grades, the 
K-means cluster analysis in SPSS was implemented on the 
990 construction project scores and the defect frequencies 
(the number of times is 17,648). Ultimately, the sample sizes 
were produced from the four new grades: A = 458 projects, B 
= 135 projects, C = 303 projects and D = 94 projects. 

B. DT Algorithm 
A DT has a tree-like structure comprising a root node, 

branches, and leaf nodes. Each node represents an attribute, 
leaf nodes represent classification categories, and branches 
represent value in the test attributes. 

Each DT begins with the development of the root node, 
and nodes are added according to the problems and attributes 
of the classification. Branches are used to determine whether 
a data entry should be applied to a child node in the next layer. 
This process continues until all data entries reach the leaf 
nodes. Leaf nodes represent the obtained result, which can be 
converted into the corresponding “if... then...” rule. 

DT are based on the input variables used to obtain the 
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target variables for distribution of the attributes and the root 
nodes for verification and data cutting. According to the DT 
rules and methods for data classification, each branch 
represents a test result. The leaf nodes represent the 
distribution of the target variables and are represented by the 
shape of the branches. Each path from the root node to the 
leaf nodes can be extracted using a DT rule. 

DT algorithms can determine tree structures that strongly 
influence the attributes of the target variable distribution. In 
addition, they can classify the data through the selection of 
variables and designation of the target, and they can present 
the classification system or prediction model with a 
hierarchical structure. 

The DT algorithm commonly used in academia and 
industry can be classified into four types: C5.0, CART, 
CHAID, and QUEST [19]. The main differences between 
these algorithms are the methods of splitting the attribute 
criteria of the root and child nodes and the numbers of split 
child nodes. 

In the CHAID algorithm proposed by Kass [20], the 
chi-squared test is used to determine the splitting condition, 
and the probability value is used to determine whether to 
continue splitting the CHAID to measure all the possible 
prediction variables. For each variable, the significances of 
the differences between the various categories of dependent 
variables are tested, the non-significant categories are 
merged into a homogeneous group, and the remaining 
categories are analyzed repeatedly until the differences are no 
longer significant. 

The CHAID calculation terminates when sufficient p 
values have been obtained. This method of splitting is a 
common alternative, known as the exhaustive method. 
Merging continues until a binary split, after which the split 
with the most favorable p value among all the splits is 
adopted. Thus, the CHAID algorithm does not require the 
prune back operation employed in the CART algorithm; 
however, the CHAID algorithm cannot process continuous 
data. 

 

III. ANALYTICAL RESULTS AND DISCUSSION 
In this study, a DT was used to analyze construction 

defects and grades. A total of 990 construction inspection 
cases (17,648 defect frequencies) were divided into training 
and test groups with proportions of 70% and 30%, 
respectively. The CHAID algorithm employs data from the 
test group to validate the model and calculate its prediction 
accuracy. The DT in this study gained defect frequencies (see 
Table I). 

The DT constructed by the CHAID algorithm is shown in 
Fig. 1. The target attribute in the root node represents the 
inspection grades. The first-level attribute is “failure to 
inspect construction progress, building material, or 
equipment; failure to fill or compile checklists; misjudgment, 
or failure of implementation” (A47). The second-level 
attributes are “debris on concrete surface” (B4) and 
“substandard concrete pouring or ramming, resulting in cold 
joints, honeycombs, or pores” (B1). The third-level attributes 
are “failure to log the construction journal, failure to log in 
the predetermined format, or incomplete logging” (A75), 

“steel bars exposed in the workplace are prone to stabbed and 
bruised disasters, and did not take a curved tip, stamping or 
installation of protective sheathing and other facilities” 
(B307), “failure to meet the garbage and waste cleaning 
requirements and generated environmental impacts” (B59), 
and “failure to install required fall protection facilities such 
fences, covers, safety nets, and seat belts on jobsite fringes 
and openings with height gaps of at least 2 m” (B285). The 
fourth-level attributes are B307, B1, B293, A48, A75, B58, 
A78, and B282. 
 

TABLE I: DEFECT TYPES AND FREQUENCIES 

Code Defect type Defect 
frequencies 

A4 Lack of, unimplemented, or incomplete quality 
supervision and inspection records 

186 

A47 Failure to inspect construction progress, 
building material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of 
implementation 

293 

A48 Failure to notify the supervision unit or 
contractor in written form to mitigate known 
construction defects within the deadline 

184 

A75 Failure to log the construction journal, failure to 
log in the predetermined format, or incomplete 
logging 

406 

A76 Failure to implement quality control checklist, 
failure to quantify inspection standards or 
errors, or failure to record the inspection 
accurately 

657 

A78 Environmental protection, construction safety 
and sanitation compliance matters without 
defect corrective and preventive measures  

213 

A81 No quality control statistical analysis, corrective 
and preventive measures 

170 

B1 Substandard concrete pouring or ramming, 
resulting in cold joints, honeycombs, or pores 

275 

B4 Debris on concrete surface 264 
B58 Construction site groundwater is not treated, 

affecting environmental sanitation and safety 
66 

B59 Failure to meet the garbage and waste cleaning 
requirements and generated environmental 
impacts 

157 

B282 Other recording errors in building material and 
equipment reviews 

457 

B285 Failure to install required fall protection 
facilities such fences, covers, safety nets, and 
seat belts on jobsite fringes and openings with 
height gaps of at least 2 m 

167 

B293 The construction frame is not properly 
connected with the stable structure or does not 
meet the requirements 

83 

B307 Steel bars exposed in the workplace are prone to 
stabbed and bruised disasters, and did not take a 
curved tip, stamping or installation of protective 
sheathing and other facilities 

96 

 
In this study, five rules were obtained using the CHAID 

algorithm (Table II). Each rule was mainly focused on the 
defect attribute of grade D for determining the conditions that 
are likely to result in poor inspection grades. The relationship 
between the defects can be determined from these five rules 
and the percentages of the four grades (A, B, C, and D). 

For example, in the case of CHAID Rule 1, if A47 is not 
satisfied, but B4, B307, and A48 are satisfied, then the 
probability obtaining grade D is 80%, whereas those for both 
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A and B are 10%. Table II shows that CHAID Rule 5 yielded 
the highest probability of predicting grade D (93.75%), 

whereas CHAID Rule 3 had the lowest probability of 
predicting grade D (57.14%). 

 

 
Fig. 1. Defect decision tree: CHAID algorithm. 

 
TABLE II: CHAID RULES AND INSPECTION GRADES 

Rule Decision Rules 
Inspection grades 

A (%) B (%) C (%) D (%) 

1 if A47=0 & B4=1 & B307=1 & A48=1 then D 10.00 10.00 0 80.00 

2 if A47=1 & B1=0 & B59=1 & B58=1 then D 0 0 12.50 87.50 

3 if A47=1 & B1=1 & B285=0 & A78=1 then D 0 28.57 14.29 57.14 

4 if A47=1 & B1=1 & B285=1 & B282 = 0 then D 20.00 0 20.00 60.00 

5 if A47=1 & B1=1 & B285=1 & B282 = 1 then D 0 6.25 0 93.75 

 
In addition, the importance value was used to represent the 

relative importance of the DT attributes. The higher the 
importance value of the attribute, the strong its predictive 
ability. Attribute importance was evaluated by computing the 
total reduction of impurity achieved by each attribute. The 

summation of the importance values for all selected attributes 
in a given algorithm must be 1. In this study, the attribute 
importance values were between 0 and 1. 

Fig. 2 shows the importance values of the defect attributes 
according to the CHAID algorithm. Evidently, the most 
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important attribute of the CHAID model was A47, which 
indicated that this attribute has the highest predictive power 
among all the defect attributes. In order of importance, 
“failure to inspect construction progress, building material, 
or equipment; failure to fill or compile checklists; 
misjudgment, or failure of implementation” (A47) was 
followed by “debris on concrete surface” (B4; 0.183), 
“substandard concrete pouring or ramming, resulting in cold 
joints, honeycombs, or pores”(B1; 0.138), and “failure to log 
the construction journal, failure to log in the predetermined 
format, or incomplete logging” (A75; 0.117). 

 

 
Fig. 2. Defect importance values produced by the CHAID algorithm. 

 
In this study, we used a gain chart to assess the 

classification effectiveness of the DT and a confusion matrix 
to determine the correctness of classification predictions.  

The gain chart in Fig. 3 compares the most commonly used 
DM methods, with the horizontal and vertical axes both 
representing percentages. The horizontal axis percentages are 
sorted according to probability from high to low, 
representing percentages of the test data set; the vertical axis 
represents the percentages of correctly predicted values 
(gain).  

 

 
Fig. 3. Gain chart for the CHAID algorithm. 

 
The upward curve of gain chart indicates that the better the 

model is, the greater is the area under the curve. If the 

model’s cumulative gain curve displays a 45° angle to the 
horizontal axis (e.g. green line), then the model is a random 
model, and the predicted benefits cannot be classified.  

The classification of predictive ability of the DT in this 
study reveals that 80% of the predicted values are correct 
when more than 50% of the test group is used (Fig. 3). 

The confusion matrix in Table III compares the model 
predictions with the test data to measure the effectiveness of 
the model classification and thus evaluate the supervised data 
classification. The confusion matrix uses a matrix for data 
visualization. 

In an ideal model, the classification predictions match the 
actual values. However, most model predictions are not 
100% accurate. For example, a set of attributes resulting in 
grade A, were predicted by the DT model to yield grade B. 
Therefore, a confusion matrix is required to analyze the recall 
and correctness of the model predictions. The confusion 
matrix presents all the classification information in a 
complete matrix. 

Table III and IV show the recall and correctness of the 
CHAID algorithm. The recall for a category is the number of 
predictions in this category divided by the actual number of 
members of this category. For example, the CHAID 
algorithm correctly predicted 351 entries as grade A; dividing 
this by the total number of actual grade A entries (458) yields 
a recall of 76.64%. The CHAID algorithm yielded similar 
recalls for grades A, B, C, and D grades between 68% and 
78%. 

Correctness is the number of correct predictions across all 
categories divided by the total number of entries. For 
example, the CHAID algorithm correctly predicted 351, 93, 
239, and 64 entries for grades A, B, C, and D, respectively 
(Total 747); the summation of these values divided by the 
total number (990) yields the correctness of 75.45% (Table 
IV). 
 

TABLE III: CONFUSION MATRIX FOR CHAID ALGORITHM 
N=990 Predicated Total 

(N) 
Recall 

(%) Actual A B C D 

A 351 39 65 3 458 76.64 

B 35 93 3 4 135 68.89 

C 53 4 239 7 303 78.88 

D 10 4 16 64 94 68.09 

 
TABLE IV: CORRECTNESS FOR CHAID ALGORITHM 

Partition CHAID 

Classification correct (N, %) 747 75.45 

Classification incorrect (N, %) 243 24.55 

 

IV. CONCLUSION 
Construction projects have varying levels of complexity. 

When 499 defect types are found during a construction 
inspection, all resources cannot be devoted to comprehensive 
defect management. Therefore, project managers must 
choose the most important defects for the implementation of 
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control mechanisms. In particular, because defects directly 
affect inspection grades, special attention is required to avoid 
producing them. 

DT analysis is a powerful technique because of its binary 
“if… then…” rule based structure. The rules applied for DM 
through DT analysis are easy to understand and explain. 
Therefore, this study employed DT techniques to classify 
defect rules from the PCMIS construction inspection 
database. The rules can enable the project management unit 
to choose the optimal classification algorithm and develop 
appropriate strategies for defect management. 

DM techniques can be used to acquire information hidden 
in decision rules. By selecting and interpreting implicitly 
useful rules, DM can yield reliable information regarding 
construction defects. In addition, cluster analysis of scoring 
and defect frequencies obtained from the construction 
inspection database can reduce the number of samples in 
inspection grade groups, thereby ensuring more accurate 
results. 

This study employed the CHAID algorithm to determine 
the results of individual defect attributes and effectively 
generate the defect importance values. The results revealed 
that “failure to inspect construction progress, building 
material, or equipment; failure to fill or compile checklists; 
and misjudgment or failure of implementation” (A47) was 
the most important attribute. 

In addition, the CHAID algorithm yielded five rules that 
accurately described the association between attributes 
(grades) and defect predictions. This study demonstrated that 
DT techniques are useful for analyzing the defect data of 
construction inspections. 
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