
  

  

Abstract—The Internet of Robotic Things is an emerging 

vision that brings together pervasive sensors and objects with 

robotic and autonomous systems. This survey examines how the 

merger of robotic and Internet of Things technologies will 

advance intelligent manufacturing, thus enabling the creation of 

new, potentially disruptive services. This paper discusses some 

of the new technological challenges created by this merger and 

concludes that a truly holistic view is needed but currently 

lacking. 

 
Index Terms—Internet of things, manufacturing robotics, 

autonomous systems, intelligent manufacturing, internet of 

Robotic Things (IoRT), FANUC robot.   

 

I. INTRODUCTION 

Robotics and automation skills are highly sought by all 

industrial companies in the world. Companies like Foxconn 

have been devoting to efforts in robotics innovation with 

artificial intelligent. However under the environments of 

Industrial Internet of Things (IIoT) and Industry 4.0, the 

challenges include interoperability, reliability, efficiency, and 

security [1], [2]. With smart robots and semiautonomous 

machines that can be controlled remotely through virtual 

interfaces, precision and timely responses are required [3], 

[4].  

The research of intelligent manufacture has been conducted 

from different perspectives by many researchers in both 

industrial and academic fields. For examples, Liu, Qing and 

Guo (2017) analyze key factors affecting the development of 

the leading companies in Intelligent Manufacturing (IM) and 

found that industrial chain factor is the critical factor to 

stimulate the investment of IM [5]. Empirical results also 

show that capital factor is a significant factor, which will 

contribute to the development of manufacturing companies to 

advanced level. The aim of this survey is to explore the 

potential of integrating IoT with robotic technologies in 

intelligent manufacturing. This research structure the 

discussion along the system abilities commonly found in 

robotic systems, regardless of specific robot embodiment or 

application domains. Finding a suitable taxonomy of abilities 

is a delicate task.  This study is performed based on the 

existing efforts and adopt the taxonomy of 9 robotic abilities, 

which define in the US Robotics roadmap and euRobotics 

roadmap (see Fig. 1). 
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Fig. 1. euRobotics roadmap and US robotics roadmap. 

 

II. IOT AND ROBOTICS IN INTELLIGENT MANUFATURING 

A. Basic Abilities 

1) Perception ability 

Compared to the on-board sensing, IoT can offer robots a 

wider horizon in time, space and types of information in the 

context of manufacturing based on data analytics technologies 

and sensors. Furthermore, on-board sensors provide a 

dynamic way and flexible way to position the robots [6], [7].  

A key challenge of perception in manufacturing 

environment is that the parts, components or products are 

spatially and temporally distributed [8]. It is crucial to allow 

robots to acquire these distributed data. Gnnther et al. 

presents an anchoring system that continually integrates new 

observations from a 3D object recognition algorithm into a 

probabilistic world model to maintain a real-time 

correspondence between the objects and robot [9].  

Other authors propose Context-Augmented Robotic 

Interaction Layer (CARIL) to leverage cognitive 

representations of shared context as a basis for a 

fundamentally new approach to human-robotic interaction by 

giving a robot a worker-like representation of context and 

ability to reason about context in order to adapt its behavior to 

that of the worker around it [10].  

A key component of robots’ perception ability is getting 

knowledge of their own location, which includes the ability to 

build or update models of manufacturing environment. 

Despite great progress in this domain, self-localization may 

still be challenging in crowded and/or Global Positioning 

System (GPS)-denied indoor environments, especially if high 

reliability is demanded. Diaz et al. presents a novel approach 

to determine a close-optimal workpiece pose for different 

robotic manufacturing processes like welding and milling 

based on a model-based interpretation of the Product, Process, 

and Resource (PPR) components defined in an internally 

developed Computer-Aided Manufacturing (CAM) software. 

By exploring an interpreted Configuration Space (C-space) 

using a Degree of Freedom (DoF) of the Robot 
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Manufacturing Processes (RMP), Diaz et al. found the 

optimal motions in reaction to infeasible states of the robot 

(i.e. maximum joint limits and reachability) and a 

close-optimal workpiece pose. 

Simple IoT-based infrastructures and range based 

techniques on signals emitted by off-board infrastructure, 

such as a radio frequency identification (RFID) [11], Wi-Fi 

access points, and visible light or by IoT devices using 

protocols such as Ultra-Wideband (UWB), Zigbee, or 

Bluetooth lowenergy [12]. 

2) Motion ability 

A major challenge of today's manufacturing in the context 

of Industry 4.0 and Cyber-Physical Manufacturing Systems is 

to be flexible and adaptive whilst being robust and 

economically efficient. Specifically, the implementation of 

motion planning processes for industrial robots need to be 

refined concerning their variability of the motion task and the 

ability to adaptively deal with variations in manufacturing 

environment. The ability to move is one of the fundamental 

added values of robotic systems. FANUC 200iC Lr Mate with 

6 DOF robot arm has been designed to control the motions in 

order to minimize execution time, the effort and energy 

consumed by actuators [13].  

While mechanical design is the key factor in determining 

the intrinsic effectiveness of robot mobility, IoT connectivity 

can assist mobile robots by helping them to control automatic 

doors and elevators, for example in assistive robotics and in 

logistic applications [14]. Meyes et al. propose a 

reinforcement learning (RL) based, cognition-enhanced 

six-axis industrial robot for complex motion planning along 

continuous trajectories as e.g. needed for welding, gluing or 

cutting processes in production [14]. FIROS is a recent tool to 

connect mobile robots to IoT services by translating Robot 

Operating System (ROS) messages into messages grounded 

in Open Mobile Alliance APIs. Such an interface is suited for 

robots to act as a mobile sensor that publishes its observations 

and makes them available to any interested IoT service [15].  

In application scenarios such as Multi-Robot System, 

where communication infrastructure may be much more 

complicated, mobile robots may need to set up ad hoc 

networks and use each other as forwarding nodes to maintain 

communication. While the routing protocols developed for 

mobile ad hoc networks can be readily applied in such 

scenarios, lower overhead and increased energy efficiency 

can be obtained when such protocols explicitly take into 

account the knowledge of robot’s planned movements and 

activities. Schuster et al. considers an autonomous 

multi-robot pick-and-place process for the manufacturing of 

aerospace structures, which consists of the steps picking, 

transfer, dropping and post-drop treatment. Autonomous 

production is achieved by combining computer vision 

assisted gripping, automated transfer path generation and 

generic process execution in one system. 

3) Manipulation ability 

The use of robots working with humans offers new 

possibilities in the execution of assembly tasks through sense 

the manufacturing environment. A common model needs to 

be established describing how a task will be executed in a 

collaborative manner. Once the robots have acquired the 

relevant features of manufacturing model, like tasks, their 

positions and contours, the sequence of torques to be applied 

on the joints can be calculated via inverse kinematics, enables 

a collaborative flexible manufacturing assembly station while 

supporting dynamic re-scheduling of manufacturing 

operations towards an adaptive and more efficient execution 

of the production schedule [16].  

The added value of IoT is in the acquisition of 

manufacturing model, including those that are not observable 

with the robot’s sensors but have an impact on the 

manufacturing process, such as the distribution of mass. Some 

researchers attached RFID tags to objects that contain 

information about their size, shape and grasping points [17]. 

Deyle et al. embedded RFID reader antennas in the finger of a 

gripper: Differences in the signal strength across antennas 

were used to more accurately position the hand before 

touching the object [18]. Longer range RFID tags were used 

to locate objects in smart factories [19], as well as to locate 

the robots themselves [20]. 

B. Higher Level Abilities 

1) Decisional autonomy 

Some researchers use Artificial Intelligence (AI) planning 

techniques for task allocation (TA) in manufacturing industry 

based on predictive models of manufacturing environment 

and of the possible actions [21].  

Thus, the quality of robots’ actions critically depends on 

the quality of these models and of the estimate of the states. In 

this respect, the improved situational awareness that can be 

acquired by an IoT environment can lead to better actions. 

Karlsson et al. explore knowledge of the intentions of the 

humans inferred through an IoT environment to generate 

robots’ actions that respect constraints on human interaction 

[22]. In addition, IoT devices may dynamically challenge 

classical multi-agent planning approaches in terms of 

widening the scope of robot decisional autonomy by making 

more actors and actions available, such as controllable 

machines and equipment [23]. 

2) Interaction ability 

Due to high variants and small lot sizes, a conventional use 

of robots behind fences does not fulfill the requirements of 

today’s production anymore. Therefore, the importance of 

mobile robot systems is increasing. In order to best use the 

capabilities of these robots, teams consisting of several robots 

or a robot and a human are built. For a cooperative work 

between robot and human, interaction systems are necessary. 

Interaction ability is the ability of a robot to interact 

physically, cognitively and socially either with the operators 

or other systems in manufacturing environment. This part 

focuses on how IoT technologies can facilitate human–robot 

interaction in manufacturing environment. Interaction ability 

focuses on how IoT technologies can facilitate human–robot 

interaction in manufacturing environment. IoT sensors can 

make human–robot interaction more robust in manufacturing 

environment. The IoT can provide information on the position 

and state of parts and equipment to disambiguate natural 

language instructions that are often vague or contain implicit 

assumptions [24].  
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In recent years, cognitive robots have started to find their 

way into manufacturing halls. However, the full potential of 

these robots can only be exploited through an integration of 

the robots with the Manufacturing Execution System (MES), 

a new and simpler way of programming based on robot skills, 

automated task planning, and knowledge modeling, and 

enabling the robots to function in a shared human/robot 

workspace with the ability to handle unexpected situations.  

Some researchers propose the implementation of a 

collaborative robot to reduce the incidence of occupational 

risks among the employees of an assembly station and thus 

increase their safety and improve the performance of the 

entire assembly line. The collaborative robot was configured 

by using the console method, which found that the 

collaborative robot frees employees from potential 

occupational risks. Moreover, wearable sensors, on-board 

sensors and external cameras provide a broader scene to 

improve gesture recognition. For example, Wolf et al. 

presented a sleeve that measures forearm muscle movements 

to command robot motion and manipulation [25]. In addition, 

the added value of IoT in interaction ability is for remote 

interaction through tele-interaction robots [26]. 

3) Cognitive ability 

With the rapid rise in robot presence in a variety of life 

domains, understanding how robots influence people’s 

emotions during human-robot interactions is important for 

ensuring their acceptance in society. Mental health care, in 

particular, is considered the field in which robotics 

technology will bring the most dramatic changes in the near 

future. By reasoning on and inferring knowledge from 

experience, cognitive robots are able to understand the 

relationship between themselves and the environment, 

between objects, and to assess the possible impact of their 

actions. In an intelligent factory, introducing edge computing 

is conducive to expanding the computing resources, the 

network bandwidth, and the storage capacity of the cloud 

platform to the IoT edge, as well as realizing the resource 

scheduling and data uplink and downlink processing during 

the manufacturing and production processes [27].  

Occupational risk factors (e.g. awkward postures, 

excessive effort, and repetitive movements) are a growing 

concern in the manufacturing industry due to their 

relationship with the incidence of musculoskeletal disorders 

(MSDs). In this sense, collaborative robots developed 

purposely for performing manufacturing tasks have emerged 

as an attractive solution to the problem. The added value of 

IoT in cognitive ability is that the emotion recognition and 

interaction of the Affective Interaction Intelligence Robot 

(iRobot), with the IoT cloud platform as the infrastructure and 

AI technology as the core competitiveness, can improved 

both the chip assembly and the production efficiency [27].  

C. System Level Abilities 

1) Configurability 

Configurability considers as the ability that the robotic 

system is configured for given tasks or reconfigured for 

different task [28]. In manufacturing environment, IoT is 

beneficial for software configurability and collaborative 

configuration multiple devices that contribute various 

capabilities and cooperate to perform complex tasks or jobs. 

For example, assembly line has been set up as a multi-agent 

system, which equips with self-descriptive capability for the 

purpose of reducing changeover and set-up time [29]. 

The Internet of Things (IoT) and Artificial Intelligence (AI) 

have been driving forces in propelling the technical 

innovation of intelligent manufacturing, promoting economic 

growth, and improving the quality of people’s lives. In an 

intelligent factory, introducing edge computing is conducive 

to expanding the computing resources, the network 

bandwidth, and the storage capacity of the cloud platform to 

the IoT edge, as well as realizing the resource scheduling and 

data uplink and downlink processing during the 

manufacturing and production processes. Moreover, the 

emotion recognition and interaction of the Affective 

Interaction Intelligence Robot (iRobot), with the IoT cloud 

platform as the infrastructure and AI technology as the core 

competitiveness, can better solve the psychological problems 

of the user. 

There is a challenge in areas of advanced manufacturing 

and logistic, where faster reactions should be made to the 

disruptions through flexible adaptation to achieve production 

objectives. The added value of IoT in configurability is that 

IoT contributes to this problem through the exchanges of 

continuous data stream to interact with physical world. 

Moreover, configurability could be integrated with the 

decision ability to improve the ability of self-configuration 

based on IoRT system by considering digital interactions 

among the actors [30]. Some researchers point out that, to 

make a mobile robot with real-time vision system adapt to the 

highly dynamic environments and emergencies under the 

real-time constraints, a significant account of processing 

power is needed. Instead of pushing the limit of software 

development and computational resources, and to reduce the 

system computation time and improve system fault-tolerance, 

an embedded platform can dynamically reconfigure a mobile 

robot system on the fly by integrating Field Programmable 

Gate Arrays (FPGA) and embedded processors in a 

system-on-chip (SOC) environment, which has been applied 

to a real-world mobile robot and the experimental results 

demonstrate its feasibility and efficiency [31].. 

2) Adaptability 

Adaptability allows the robot to adapt to different 

manufacturing scenarios, such as unforeseen events, changing 

tasks or unexpected human behaviors. Mobile robots are used 

in smart manufacturing for machining, cutting, welding and 

assembling [31]. Robots should be able to adapt to the 

variations of product type, manufacturing procedure and 

process, batch size, and so on. Gealy et al. explore the 

adjustment of drip rate of single water emitter through the 

robot in order to control the level of irrigation, which is one of 

the most notable examples that show the robot has been 

utilized to control IoT devices. Some systems that support the 

adaptations of IoRT have been developed, such as IoT home 

automation based on OSGi and recurrent neural networks.  

Some researchers pointed out that soft robotics are more 

adaptable to withstand heat, water and heavy weights, which 

allows them to operate under conditions that electrical 

equipment would not be able to withstand. This is particularly 
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useful for manufacturers that use flammable or toxic 

chemicals during the manufacturing process. 

3) Dependability 

Dependability represents multifaceted attributes, which 

cover the reliability of software robotic component and 

hardware, safety when collaborating with other robots or 

humans and the degree to which IoT system should be 

continuing to achieve predetermined objectives and missions 

although the unforeseen circumstances or the failures occur 

[20]. The means of dependability are classified as forecast 

faults or conflicts, robust system engineering, and fault 

tolerance. IoT technology can provide useful tools, such as a 

network of small transceivers, embedded sensors in clothing 

and on the helmet, to realize forecast faults or conflicts in 

manufacturing environment.  

From perspective of robust system engineering, IoT 

protocols have been explored to deal with these industry 

concerns regarding the reliability, cost or security, such as 

Zigbee Pro and Wireless Hart. Fault tolerance of Iot and 

Robotics should allow the systems to continue working even 

while the components or subcomponents failed since IoRT 

enables redundancy of sensors, information and actuation. 

 

III. CONCLUSION 

IoT and Robotics are two domains and each covers a 

myriad of concepts and technologies. This survey has 

explored the added values of the crossover of IoT and 

Robotics based on 9 system abilities in the context of 

intelligent manufacturing. The advantages of IoT explored by 

the roboticists and researchers are mainly M2M protocols and 

distributed perceptions. Conversely, the IoT has been mostly 

explored the robot for the active sensing strategy. Current IoT 

incarnation in intelligent manufacturing mostly focus on the 

domains of vertical applications, such as Industry 4.0, 

precision agriculture and AAL. Therefore, IoRT shall 

advance beyond the terms of ‘Robot-enhanced IoT’ or 

‘IoT-aided robot’. This review is expected to stimulate the 

scholars and researchers from both IoT and Robotics to 

explore towards the ecosystems of cloud, IoT agents and 

robots that integrates both in order to promote the 

development of intelligent manufacturing. 
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