
  

  

Abstract—The accuracy of MEMS inertial sensors is affected 

by random errors. Kalman Filter is the commonly used 

approach in reducing the random errors of MEMS sensor 

output. However, this approach is restricted by some 

dissatisfaction e.g. the divergent problem and the fixed noise 

covariance matrix Q and R’s inability to represent the dynamic 

noise characteristics of the system. In this paper, Particle 

filtering method is employed to reduce the random errors of 

MEMS gyro output. By a set of samples, Particle Filter is able to 

represent the posterior distribution of the states in a dynamic 

system when partial observations are made and random 

perturbations are present in sensor outputs. Experiments with 

artificial data sequence as well as authentic ADIS16445 inertial 

gyro output are conducted and then Particle Filter and Kalman 

Filter method are introduced to process these signals. Allan 

Variance analysis reveals that two main random errors are 

notably diminished after both filtering method and noticeably 

Particle Filter is superior to Kalman Filter in reducing MEMS 

gyro random noise. 

 
Index Terms—MEMS gyro, random error, Particle Filter, 

Kalman Filter.  

 

I. INTRODUCTION 

Advances in MEMS(micro-electro-mechanical-system) 

techniques bring about the extensive application of MEMS 

sensors e.g. automobiles, smart phones, wearable devices and 

so forth. In the application of automobile navigation and 

positioning, the accuracy of MEMS inertial sensors influence 

the performance of INS(inertial navigation system) and thus 

the accuracy of vehicle positioning. The output of MEMS 

inertial sensors suffer from several types of errors which 

generally can be classified into two categories: deterministic 

error and random error [1]. In this paper, Focus is situated in 

the approaches to deal with random errors. Traditionally, the 

Allan variance is employed to identify the random error 

sources and corresponding noise parameters [2]. Based on 

prior knowledge of the random error sources, many methods 

have been explored to deal with them. 

Normally, some digital filter techniques can be used to 

directly remove the random noise on specific frequency band, 

such as using a low pass filter to filter out the low frequency 

noise or using wavelet de-noising technology to remove the 

high frequency random noise [3]. However, this kind of 

methods may risk losing some useful information of the signal 

due to improper choice of wavelet level of decomposition. 

Apart from these digital filters that directly remove the 

random noise, Kalman Filter is a popular method and it enjoys 
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many applications in the context of vehicle navigation and 

positioning such as the initial alignment process of SINS [4] 

and the sensor fusion of integrated navigation system [5]. In 

order to eliminate the random error of MEMS inertial gyro, 

Kalman Filter is combined with time series analysis. First 

based on time series analysis, an 

ARMA(autoregressive-moving-average) model is built and 

from it Kalman Filter state equation and measurement 

equation are constructed to filter the random noise in an 

iterative manner [6]. The conventional Kalman Filter entails 

fixed process noise and measurement noise covariance matrix 

Q and R. The prior knowledge of noise statistics is not enough 

to represent process noise covariance matrix of a dynamic 

system precisely. Thus fixed noise covariance can lead to 

divergent problems [7]. Apart from Kalman Filter methods, 

SVM(support vector machine) [8] and neural network method 

[9] are also used to deal with the random errors of MEMS 

inertial sensors. But these methods are flawed by slow 

training convergence speed, local minima and over-fitting 

problems. 

Over the past decades, a series of nonlinear filtering 

methods based on Bayesian approach have been introduced to 

solve problems in tracking maneuvering target, perception 

and navigation, signal compression and transmission and so 

forth [10]. These sequential Monte Carlo approaches include 

Bootstrap Filter, Condensation Tracks, Particle Filter and 

Interacting Particle Approximations etc. [11]. All of them are 

based on the sequential importance sampling(SIS) algorithm. 

By a set of random state samples, the objective of Particle 

Filter is to represent the posterior distribution of the states in 

dynamical systems when partial observations are made and 

random perturbations are present in the sensors as well as in 

the dynamical systems. To put it mathematically, the posterior 

probability distribution at epoch k-1 is denoted as 

1 1: 1( | )k kp x z− − , samples drawn from the posterior distribution 

are called particles. Through state update and measurement 

update, the posterior probability of these n samples 

approximates the system posterior probability distribution 

1:( | )k kp x z . Just like all other Bayesian filtering algorithm, 

Particle Filter constructs recursively the posterior probability 

distribution from 1 1: 1( | )k kp x z− − one time step earlier. Particle 

Filter is nonparametric and therefore can represent a much 

broader spectrum of distribution. Another advantage is its 

ability to model nonlinear transformations of random 

variables [12]. 

In this paper, we introduce Particle Filter in the MEMS 

inertial signal processing and compare the effect of reducing 

random errors of gyro output between Kalman Filter and 

Particle Filter. In Section II a basic description of Particle 

Filter and Kalman Filter algorithm is given. Afterwards in 
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Section III, time series analysis is used to build ARMA(p,q) 

model of the gyro signal, which leads to the state equation and 

measurement equation of the system. And then the Kalman 

Filter and Particle Filter are implemented to eliminate the 

random error of gyro signal respectively, the filtering results 

for both approaches are compared through Allan variance 

analysis. Finally, a conclusion is drawn in Section IV. 

 

II. TWO FILTERING ALGORITHM 

A. Particle Filter 

To describe a dynamical system, the state space equations 

are shown in (1): 

1 1( , )

( , )

k k k k

k k k k

x f x w

z h x v

− −=

=
                               (1) 

where, : x w xn n n

kf R R R → , : x v zn n n

kh R R R → are 

possibly nonlinear function. kw , kv  are process noise 

sequence and measurement noise sequence respectively and 

they are independent. xn , wn are the dimensions of the state 

vector and process noise while zn , vn are the dimensions of 

the measurement vector and measurement noise. 

The main idea of Particle Filter is to approximate the 

posterior distribution 1:( | )k kp x z  by a set of random state 

samples drawn this posterior.  These particles can be 

denoted: [1] [2] [ ], , ... , M

t t t tx x x =  . Corresponding to each 

particle, weights [ ]m

t  are defined to evaluate how well they 

predict the current measurement. The particles with large 

weight are kept and those with small weight are thrown away. 

This step is called resampling. The resampling algorithm 

draws with replacement M particles from the particle 

set [1] [2] [ ], , ... , M

t t t tx x x = . The probability of drawing each 

particle is given by its weight. The resampling step transforms 

the particle set of M particles into another particle set of the 

same size. The resulting sample set usually possesses many 

duplicates, since particles are drawn with replacement.  And 

after resampling, they are distributed approximately 

according to the posterior distribution 1:( | )k kp x z .The basic 

algorithm for Particle Filter is shown using pseudo-code as 

below: 

 

 

B. Kalman Filter 

Kalman Filter is an algorithm that uses a series of 

measurements observed over time, containing statistical noise 

and other inaccuracies, and produces estimates of unknown 

variables that tend to be more accurate than those based on 

one single measurement alone. Among its diverse 

applications, in this case, Kalman Filter forms a contrast with 

Particle Filter mentioned above in reducing the random errors 

of MEMS inertial gyro outputs. 

To design a standard Kalman Filter, the system state 

equation and measurement equation are initially determined 

in (2): 

1 1k k k

k k k

x Ax w

z Hx v

− −= +


= +
                            (2) 

where, kx denotes state vector at epoch k; kz  denotes 

measurement vector at epoch k; A is the state transition matrix; 

H is the observation matrix; 1kw − , kv  represents the process 

noise and measurement noise respectively. One prerequisite 

of standard Kalman Filter is that 1kw − , kv are white Gaussian 

noise with zero mean and independent from each other. The 

noise item 1kw − , kv  have covariance matrices Q   and R  

respectively. 

The procedures of a standard Kalman Filter are expressed 

in the following steps: 

(1) step prediction of the state: 

| 1 1k k kx Ax− −=
                                    

 (3) 

(2) step prediction of the error covariance matrix: 

| 1 1

T

k k kP AP A Q− −= +                                  (4) 

(3) calculate Kalman gain: 

1

| 1 | 1[ ]T T

k k k k kK P H HP H R −

− −= +                        (5) 

(4) estimate of the state: 

| 1 | 1( )k k k k k k kx x K z Hx− −= + −
                        

 (6) 

(5) estimate of the error covariance matrix: 

| 1( )k k k kP I K H P −= −                                     (7) 

The initial state and error covariance matrix are 0x̂  and 
0P̂ . 

Given 0x̂
0P̂ , (3)~(7) are calculated circularly to obtain the 

optimal estimation of the state. 

 

III. EXPERIMENT AND ANALYSIS 

A. Experimental Settings 

The MEMS inertial sensor involved in the experiment is 

ADIS16445 produced by Analog Devices. A triaxial 

gyroscope and a triaxial accelerometer are packaged in a 

module and have a standard connector interface for data 

transmission. Data acquisition device is INCA software 

connected with ADIS16445 with ValueCAN. The experiment 

is conducted at room temperature to preclude the influence of 

temperature. Sampling frequency is 100Hz and 0.5-hour 
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static data is collected for analysis. The test layout of the 

experiment is shown in Fig. 1. 

 

 
Fig. 1. Experimental layout. 

 

Raw data collected for a length of 0.5 hour is at first 

preprocessed to remove the abnormal points according to 

3  principles and then subtracting bias from the original 

signal. After this preprocessing, Z-axis angle rate of 

ADIS16445 gyro is plotted in Fig. 2 (all signal mentioned in 

the rest of this paper is based on the data of Z-axis gyro). 

 
Fig. 2. Z-axis angular rate. 

B. Time Series Analysis 

In order to introduce Kalman Filter or Particle Filter, state 

space model of gyro output should be determined at first. 

Here time series analysis is used to build ARMA model of 

stationary, normally distributed and zero-mean signal. 

Generally, the gyro output is contaminated by trends, periodic 

components, which need to be removed to satisfy the 

requirements of ARMA model. The whole procedure to build 

ARMA model is expressed in Fig. 3 [14]. 

 

Original signal 
from ADIS16445

Remove gradual 
trends

Remove periodic 
components

Stationarity test 
and normality 

test

Stationary, zero-
mean, normal 

data
ARMA model

 
Fig. 3. The procedure of building an ARMA model. 

 

1) At first it is necessary to extract the gradual trends from 

the raw data. Normally the trend errors are characterized 

by polynomials or exponential functions. The proper 

selection of fitting function and its order is based on 2 

dimensional scatter plots and empirical experience.  

2) Periodic test is conducted on the signal form last step to 

ensure that the signal is free of periodic components. If 

there is a periodic component with the period D, then 

D-order difference method is an effective way to get rid 

of the corresponding periodic component [15]. 

3) Stationarity test and normality test are conducted on the 

signal form last step to make sure the signal is stationary 

and normally distributed, which is an important premise 

for ARMA model building.  

4) After the processing of the signal, ARMA model can be 

established as (8). 

1 2

1

2

1 0

( ) ( 1) ( 2)

( ) ( ) ( 1)

( 2) ( )

( ) ( )

p

q

p q

k k

k k

x n a x n a x n

a x n p w n b w n

b w n b w n q

a x n k b w n k
= =

= − + − + 

+ − + + −

+ − +  + −

= − + − 

            (8) 

where, ( )x n is signal value at epoch n, w is white noise, 

2(0, )w  . p, q are the order of ARMA(p, q). (8) shows that 

the random variable at epoch n is correlated with its previous 

values within p steps, white noise and the previous values of 

white noise within q steps. When q=0 or p=0, ARMA(p, q) 

converts into AR(p) or AR(q). 

Generally, AR(p) model is most frequently used to 

characterize the signal of MEMS gyro. Thus here ARMA(p, q) 

model is simplified as AR(p) model. According to truncation 

property of PACF(partial autocorrelation function) shown in 

Fig. 4. The order for AR(p) can be determined as 1. 

 

 
Fig. 4. Partial autocorrelation function. 

 

Therefore, the model used to fit the output signal of 

ADIS16445 gyro can be determined and is expressed in (9). 

( ) 0.174 ( 1) ( )x n x n w n= − +                           (9) 

C. Particle Filter and Kalman Filter 

After the AR(1) model is built, the system state equation 

and measurement equation can be expressed in (10) 

( ) ( 1) ( 1)

( ) ( ) ( )

X k AX k w k

Z k HX k v k

= − + −

= +
                     (10) 

where, 0.174A = , 1H = , ( 1)w k − , ( )v k denotes process 

noise and measurement noise respectively, which are both 

Gaussian white noise with zero mean and independent from 

each other. 

Initially, we build an artificial data sequence in conformity 
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with the obtained AR(1) model and implement Particle Filter 

and Kalman Filter respectively on this artificial sequence to 

check out the estimation effects for both methods and then the 

authentic data collected from ADIS16445 gyro is processed 

using Particle Filter and Kalman Filter for comparison. It is 

expected the results will reveal a prevailing effect for Particle 

Filter over Kalman Filter in eliminating the random noise. 

By means of Matlab, 100 points are created in conformity 

with AR(1): ( ) 0.174 ( 1) ( )x n x n w n= − + . Particle Filter 

algorithm along with Kalman Filter algorithm are tested to 

estimate the state. with regard to the same data sequence, the 

filtering results are exhibited in Fig. 5, Fig. 6 and Fig. 7. 

 
Fig. 5. Particle Filter results. 

 
Fig. 6. Kalman Filter results. 

 
Fig. 7. Filtering error comparison. 

 

Simulating results show that Particle Filter has a better 

effect in estimating the artificial data sequence than Kalman 

Filter. Evidently, the estimate errors of Particle Filter 

algorithm are less than those of Kalman Filter as are shown in 

Fig. 7. Next, both filtering algorithms are used to process the 

data collected from ADIS16445 gyro. Expectedly, the 

Particle Filter should have a better performance in dealing 

with the random errors than Kalman Filter. Test results are 

shown in Fig. 8, which proves that the Particle Filter is more 

effective in eliminating the random errors than Kalman Filter 

in application of MEMS inertial gyro ADIS16445. 

 
Fig. 8. The filtering contrast between the two filtering methods. 

 

Additionally, Allan variance method is also employed to 

analyze the effect of these filtering means quantitatively. The 

advantages of Allan variance lies in its capability to identify 

the specific random noise terms and corresponding 

characteristic parameters. Fig. 9 shows the Allan variance 

double logarithmic graphs of raw signal and the processed 

signal after two filtering methods respectively. Table I reveals 

the random noise parameters derived from Allan variance 

double logarithmic graphs for these three cases. According to 

the theory of Allan variance, two main random error sources 

can be identified according to the slopes of  Allan variance 

graphs: angle random walk (slope -1/2) , bias (slope 0).  The 

error for Allan variance algorithm increases as the cluster time 

accumulates. Thus the right part of these curves which 

correspond to the slope 1/2 embodies considerable errors and 

are not taken into consideration when identifying the random 

error sources. Then the parameters for these random error 

sources are calculated and listed in Table I Notably, after both 

filtering method, the random error parameters are 

significantly decreased. And after Particle Filter, these 

parameters are diminished greater compared with those after 

Kalman Filter method, e.g. Bias instability decreased in 

Kalman Filter case from 16.726 °/ hr to 4.138 °/ hr  and in 

Particle Filter case form 16.726 °/ hr to 0.744 °/ hr . 

 

 
Fig. 9. Allan variance comparison. 

 
TABLE I: RANDOM ERROR PARAMETERS 

 
Angle Random Walk 

( °/ hr ) 
Bias Instability( °/ hr ) 

Raw Data 1.426 16.726 

Kalman Filter 0.353 4.138 

Particle Filter 0.121 0.744 
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IV. CONCLUSION 

The accuracy of MEMS inertial gyro is negatively 

impacted by stochastic errors. This paper proposes a Particle 

Filtering method to eliminate the MEMS gyro random errors. 

First time series analysis is employed to establish ARMA 

model, from which the system state equations can be 

determined. Then Particle Filter method are introduced to 

eliminate the random errors of gyro signal and Kalman Filter 

method is also implemented in order to form contrast. 

Experiments using simulating data sequence as well as 

authentic ADIS16445 gyro output prove that the Particle 

Filter is an effective manner in suppressing the IMU gyro 

random noise and is more efficacious than Kalman Filter in 

this case. Allan variance analysis indicates that after Particle 

Filter, random error parameters are diminished greater 

compared with those after Kalman Filter method, e.g. Bias 

instability decreased in Kalman Filter case from 

16.726 °/ hr to 4.138 °/ hr  and in Particle Filter case from 

16.726 °/ hr  to 0.744 °/ hr . 
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