
  

Abstract—Machining time estimation is necessary for 

production scheduling, and it is important to answer the 

delivery date and price instantly when receiving an order from 

a customer. Currently, machining time is estimated by 

computer-aided manufacturing (CAM) system, but machining 

time estimation takes time for a numerical control (NC) 

program creation and machining simulation. Therefore, it is 

necessary to instantaneously estimate machining time. So, in 

this paper, we develop a system to estimate machining time 

instantaneously using artificial intelligence (AI), the input to the 

AI system was a trihedral figure of the shape to be removed, 

and the output was machining time (in intervals of 15 minutes). 

In this paper, we used convolutional neural network (CNN) 

which is a kind of AI and effective for image recognition, and 

estimated the machining time. Then, we created the shape to be 

removed by creating the required shape (machine parts) and 

the material shape (rectangular prisms) arbitrarily as the 

machining data, and estimated the machining time from the 

removal volume, and constructed the data set. An evaluation 

experiment was performed to allow AI to train 1082 images of 

the trihedral figure of the shape to be removed and confirm the 

estimation accuracy of the machining time. As a result of 

conducting evaluation experiments, it was possible to obtain a 

machining time estimation result within 15 minutes of 

prediction error in all 70evaluation data. In this paper, the 

outline of the proposed method, the method of creating the 

machining data of self-made, and the method of constructing 

the optimal CNN are described in order, and finally, the results 

of the evaluation experiment are summarized. 

 
Index Terms—Artificial intelligence, image processing, 

machining time estimation, trihedral figure. 

 

I. INTRODUCTION 

It is necessary to make scheduling in order to realize 

efficient production [1]. Machining time estimation is 

essential for scheduling because it provides manufacturing 

engineers with information to accurately predict the 

productivity of a machine tool and to make optimum 

scheduling [2]. When the production schedule changes, it is 

necessary to reschedule production flexibly and quickly. 

Also, when receiving a part machining order from a customer, 

it is necessary to reschedule based on a machining time 
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estimation and to give a delivery date and price instantly.  

However, due to the complexity of NC machining 

processes, combination of multiple factors, as well as the 

dynamics of manufacturing environments, it is difficult to 

achieve an accurate machining time estimation of complex 

parts. NC machining time of a part mainly depends on its 

geometry information, process plan, NC program, and 

machine characteristics. Existing commercial software tools 

and research prototype systems do not fully consider these 

factors [3]. At present, machining time is generally estimated 

by a computer-aided manufacturing (CAM) system. In this 

case, machining time is simply calculated by creating a 

numerical control (NC) program for machining and then 

dividing the total command distance by the command speed 

value on the NC program and multiply by the coefficient [4]. 

Therefore, they cannot provide accurate estimation. As a 

result, there is a problem in that a large estimation error 

occurs due to control characteristics of the machine tool, and 

the NC program generation and machining simulation are 

very time consuming. 

In fact, it is demanded for salesmen belonging to 

production companies to instantaneously answer the delivery 

date to customer’s requests. Assuming that an accurate 

estimate is made using a CAM system, a rapid estimation of 

the machining time is required in order to answer a rough 

delivery date at the sales spot. Therefore, there is a need for a 

method for estimating machining time without generating 

NC programs. 

In this research, we proposed a rapid machining time 

estimation method using artificial intelligence (AI) without 

generating NC programs. 

Machining time depends on parameter such as command 

speed and tool diameter, but in this research, it is assumed 

that these parameters depend on the shape of the workpiece 

before and after machining. Therefore, without creating an 

NC program, machining time is estimated based on a 

two-dimensional drawing (trihedral figure) of the shape to be 

removed.  

In this research, machining time is estimated based on the 

past machining data at the manufacturing factory. With the 

conventional method, the control characteristics of the 

machine tool cannot be taken into account, resulting in a large 

estimation error. However, with the proposed method, 

machining time is estimated based on the past machining 

time at each manufacturing factory including the control 

characteristics of the machine tool, so the proposed method is 

expected to improve machining time estimation accuracy. 

Finally, we confirm the accuracy of the proposed method 

through experimental evaluation. 
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II. MACHINING TIME ESTIMATION USING AI 

A. Summary of the Proposed Machining Time Estimation 

Method 

We developed an AI system to rapidly estimate machining 

time. The input data to the AI system is a trihedral figure 

image of the shape to be removed generated by subtracting 

the required shape from the material shape, and the output 

data is the estimated machining time with intervals of 15 

minutes. Fig. 1 shows the process flow of the proposed 

method. 

 

 
Fig 1. Process flow of the proposed method. 

 

The reason for selecting a trihedral figure image of the 

shape to be removed as the input data is that there is a certain 

correlation between the shape to be removed and machining 

time [5]. 

An AI system trains a large set of trihedral figure images of 

shapes to be removed and machining times to construct the 

trained AI system. The estimated machining time is output by 

inputting a trihedral figure image to the trained AI system. 

In this research, we use a convolutional neural network 

(CNN), which is a kind of deep learning, to estimate 

machining time. Deep learning is defined as machine 

learning using multi-layered neural networks and has 

attracted attention in recent years. In image recognition, 

because deep learning defines features automatically and has 

calculations in each layer, it is not necessary for image 

features to be predetermined. A CNN is a type of deep neural 

network whose structure consists of alternately stacked 

convolution and pooling layers [6], [7]. This structure models 

the receptive field in the human visual cortex and is known to 

achieve high performance in the field of image recognition 

[8]. So, a CNN is used to estimate machining time. 

B. Preparation of Training Data 

The training data is a data set of trihedral figure images and 

machining times. In order to build a CNN, it is necessary to 

prepare training data. When implementing a CNN, it is 

assumed that an actual data set is used and held on a 

manufacturing factory. The actual data set contains a 

combination of shapes to be removed and machining time 

required for actual machining, and the shapes to be removed 

are stored as trihedral figures. 

In this research, it was difficult to collect an actual data set, 

so required shapes (machined shapes) and material shapes 

were arbitrarily created to generate the shape to be removed, 

and the machining times were estimated from the removed 

volumes. In order to generate the data set, 546 required 

shapes were constructed by defining seven types of shapes, as 

shown in Fig. 2, and changing the shape parameters (inner 

diameter, outer diameter height, width, etc.). The 546 

required shapes are shapes with a slight change from each 

basic model.  

In addition, material shapes (rectangular prisms) were 

defined in consideration of the required shapes. The material  

shape is the shape of the work material before machining. In 

this research, all material shapes are defined as rectangular 

prisms. As with the required shape, a total of 21 material 

shapes were prepared by setting shape parameters. As shown 

in Fig. 3, the trihedral figures of the shapes to be removed are 

generated by subtracting the required shape (Fig.3 (b)) from 

the material shape (Fig. 3 (a)) using 3D computer-aided 

design (CAD) and deriving the shape to be removed (Fig. 3 

(c)). As a result, 1082 data sets of trihedral figures and their 

machining times were constructed by combining the required 

shapes and material shapes. Table I shows the number of the 

shape to be removed corresponding to each basic model of 

required shapes. A total of 1082 shape data shown in Table I 

were trained by AI. 

 
TABLE I: THE NUMBER OF TRAINING DATA 

Basic model of 

required 
shapes 

(a) (b) (c) (d) (e) (f) (g) Total 

The number of 
training data 

185 160 200 137 105 135 160 1082 

 

The trihedral views of each shape to be removed were 

made by the following procedure: 

(1) Create a constant-scale trihedral figure of the shape to 

be removed using 3D CAD. In this research, the scale 

was 2:1. 

(2) Save the trihedral figure obtained in (1) as a JPEG 

image. 

(3) Crop the image obtained in (2) to the specified size (150 

× 190 pixels). 

(4) Binarize the image obtained in (3) for the purpose of the 

clarification of the trihedral figure of shape to be 

removed features. 

In order to shorten the calculation time, the RGB values of 

the trihedral figures were discarded and converted to 

grayscale images. The trihedral figure is input as image data 

to AI (Deep Learning). Fig. 4 shows the trihedral figures 

actually used for training. The generated 1082 shapes to be 

removed were all converted to a trihedral figure by the above 

procedures, and input images were prepared. 

The machining time was determined by dividing the 

removed volume by a constant cutting rate (cutting volume  

per unit time); in this research, we refer to this value as the 

virtual machining time. Based on the calculated virtual 

machining times, by giving suitable machining time in 

intervals of 15 minutes to each trihedral figure, training data 

are created. 

Through the above procedures, 1082 trihedral figures of 

shape to be removed and corresponding machining time were 

obtained respectively, and a data set used for AI training was 

created. 

C. Construction of the CNN System 

The prediction accuracy of an AI system largely depends 

on the structure of a CNN. Therefore, it is necessary to 

determine the optimal structure of a CNN. The created 1082 

trihedral figure images are randomly divided into 1061 
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training data and 21 verification data. The many structures of 

the CNN were tried, and the optimal structure of the CNN 

was determined based on the correct answer rate of the 

verification data obtained from each structure. 

 

 
Fig. 2. Basic model of required shapes. 

 

TABLE II: STRUCTURE OF CNN 

No. Layer Filter size Stride Size 

1 Input layer - - (150,190,1) 

2 Convolutional layer 1 (2,2) (1,1) (149,189,10) 

3 ReLU layer 1 - - - 

4 Convolutional layer 2 (2,2) (1,1) (148,188,10) 

5 ReLU layer 2 - - - 

6 Convolutional layer 3 (2,2) (1,1) (147,187,10) 

7 ReLU layer 3 - - - 

8 Max pooling layer (2,2) (2,2) (74,94,10) 

9 Fully connected layer - - (128) 

10 Output layer - - (14) 
 

 

In determining the structure of the CNN, the number of 

layers, the combination of layers, the filter size and the 

number of filters of the convolutional layer, the filter size of 

the pooling layer, and the number of nodes in the fully 

connected layer were optimized as parameters. In addition, 

the optimal values of the initial training rate, the epoch, and 

the mini-batch size were determined as hyperparameters 

(parameters related to training). 

 

 
Fig. 3. Creating a shape to be removed. 

 

 
Fig. 4. Trihedral figure. 

 

Table II describes the structure of the CNN constructed in 

this research. It consists of seven layers: an input layer, 

convolutional layers, a maximum pooling layer, a fully 

connected layer, and an output layer. The input layer is a 150 

× 190 pixels trihedral figure, and the size of the output layer 

is 14 (machining time in intervals of 15 minutes). The 

convolutional layer and the max pooling layer are 

characteristic layers in the CNN, and their number and 

combination have a great influence on the prediction 

accuracy. In addition, a ReLU layer is used as the activation 

function to determine the output value of the convolutional 

layer in order to speed up the learning and calculation speeds. 

The initial learning rate was set to 0.0125, and it was 

multiplied by 0.5 every 10 learning sessions. The epoch was 

set as 30 times, and the stochastic gradient descent method 

was used as the learning algorithm. The mini-batch size, 

which is the number of data used to update the weight at one 

time, was set to 30. 

 

III. EVALUATION OF CONSTRUCTED CNN 

In order to confirm the usefulness of the proposed method, 

machining time estimation evaluation experiments were 

conducted using the constructed CNN. 

70 required shapes similar to those used as training data 

were prepared as evaluation shapes to evaluate the proposed 

CNN. Then, the material shapes were set for each required 

shape. Of the 70 evaluation shapes, the virtual machining 

time of 35 of them (test group A) was approximately the 

median of the machining time divided by 15 minutes. For the 
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other 35 (test group B), the virtual machining time was 

approximately the boundary value of machining time divided 

by 15 minutes. 

Trihedral figures of the shapes to be removed from test 

groups A and B were input to the constructed CNN, and the 

machining time was estimated. Then, the estimated 

machining time and virtual machining time were compared, 

and the estimation accuracy of the constructed CNN was 

evaluated. 

The estimated accuracy of each test group is shown in 

Table III. The estimation accuracy for the required shapes in 

test group A was 100%, and that for the required shapes in 

test group B was 89%. Fig. 5 and Fig. 6 show the transition of 

epochs and the correct answer rate for each test group. From 

these figures, it can be seen that as the number of epochs 

increases, both the correct answer rate of the training data and 

the test data increase, and it is possible to estimate the 

machining time from the trihedral figure of the shape to be 

removed using CNN.  

For test group A, both training data and test data have been 

trained with a correct answer rate of 95% or more. On the 

other hand, test group B has finished training with a correct 

answer rate of about 100%, while test data has finished 

training with a correct answer rate of about 90%. This is 

considered to be because the test group B was difficult to 

classify since the virtual machining time of test group B was 

set to the boundary value of machining time in intervals of 15 

minutes. 

 
TABLE III: ESTIMATION ACCURACY 

Test group A Test group B 

100 % 89 % 

 

 
Fig. 5. Prediction result on test group A. 

 

 
Fig. 6. Prediction result on test group B. 

 
     

Test data No. 1 2 3 4 

Machining time [min] 29.5 122.6 119.7 59.995 

Machining time (in 
intervals of 15 minutes) 

[min] 

15-30 120-135 105-120 45-60 

Estimated machining time 
[min] 

30-45 105-120 120-135 60-75 

 

In fact, 4 of the 35test data resulted in incorrect answers. 

Table IV shows the incorrect answer data. As you can see 

from this table, all incorrect answer data were estimated 

within 15 minutes of the correct answer. Therefore, even if 

we make a production scheduling based on this estimation 

result, it is considered that there are few problems in 

production scheduling. Also, it is considered that estimation 

accuracy can be improved by setting the increment of the 

output machining time to be small (for example, five 

minutes). In addition, AI takes time to train, but once training 

is completed, the output value (machining time in intervals of 

15 minutes) can be calculated instantaneously by inputting a 

trihedral figure of the shape to be removed. Even when using 

a CAM system, an estimation error of nearly 50% may occur, 

and a certain result was obtained in the estimation accuracy, 

and we can confirm the usefulness of this system.  

In addition, when introducing this system in the 

manufacturing factory, it is assumed that the actual data of 

the manufacturing factory is trained, so further improvement 

in estimation accuracy can be expected. 

 

IV. CONCLUSION 

In this paper, we proposed a rapid estimation method for 

machining time. We built a CNN whose input is a trihedral 

figure of shape to be removed, and output is machining time 

(in intervals of 15 minutes) based on the virtual machining 

data as a basic step. Then, the optimal structure of the CNN 

was constructed by determining the optimum value of each 

parameter that affect the estimation accuracy of the 

machining using the prepared 1082 trihedral figures. After 

that, the prepared 1082 trihedral figures were trained by CNN, 

and 70 evaluation shapes were input to the constructed CNN. 

As a result, it was possible to output the estimation result 

within 15 minutes. Moreover, since the machining time could 

be estimated instantaneously by using a CNN, the usefulness 

of the proposed method could be confirmed. 

There are two types of machining processes: roughing and 

finishing. Therefore, in the future, considering the 

characteristics of the machining time of these two types of 

machining processes, it is necessary to consider the input data 

related to the machining time. 

In addition, since machining conditions such as feed rate 

and tolerances have a large effect on machining time, we plan 

to construct a neural network that inputs these parameters in 

addition to images. We want to estimate the machining time 

in consideration of the machining process and machining 

conditions, and improve the estimation accuracy for more 

complex required shapes. 

REFERENCES 

[1] E. Y. Heo, D. W. Kim, B. H. Kim, and F. F. Chen, “Estimation of NC 

machining time using NC block distribution for sculptured surface 

machining,” Robotics and computer-Integrated Manufacturing, vol. 22, 
issue. 5-6, pp. 437-446, 2006. 

[2] Y. Tanimizu, T. Sakaguchi, and N. Sugimura, “Genetic algorithm 
based reactive scheduling (1st Report, Modification of Production 

Schedule for Delays of Manufacturing Processes),” Transactions of the 

Japan Society of Mechanical Engineers C, vol. 69, no. 685, pp. 
2458-2463, 2013. 

[3] C. Liu, Y. Li, W. Wang, and W. Shen, “A feature-based method for NC 
machining time estimation,” Robotics and Computer-Integrated 

Manufacturing, vol. 29, pp. 8-14, 2013. 

[4] Y. Yamamoto, H. Aoyama, and N. Sano. (September 2017). 
Development of accurate estimation method of machining time in 

consideration of characteristics of machine tool. Journal of Advanced 

International Journal of Materials, Mechanics and Manufacturing, Vol. 7, No. 6, December 2019

238

TABLE IV: INCORRECT ANSWER DATA



  

 
         

  

    

 

    
      

 
   

  

  
 

   
 

Hiroki Takizawa was born in Kanagawa, Japan in 
1996. He received his bachelor’s degree in system 

design engineering from Keio University, Japan in 

2019. He is currently pursuing his master’s degree in 
integrated design engineering with Keio University, 

Japan. He is currently conducting research on the 
development a system to estimate machining time 

instantaneously using artificial intelligence.   

 

Hideki Aoyama was born in Hokkaido, Japan in 

1957. He received PhD from Hokkaido University. 
His major field is CAD/CAM, digital design, digital 

manufacturing, manufacturing system, and die and 

mold.  

He is a professor of Keio University, Japan. He 

belongs to Department of System Design Engineering. 
He is currently and mainly interested in developing 3D 

CAM system for femtosecond pulsed laser.  
Professor Dr. Aoyama is a member of Japan Society 

for Precision Engineering, Japan Society of Mechanical Engineers, Japan 

society for Die and Mould Technologies, Japan Society for Abrasive 
Technology, etc.  

 
 

Cheol Won Song was born in Jeonju, Republic of 

Korea in 1976. He received bachelor’s degree and 
master’s degree in mechanical engineering from 

Jeonju University, Republic of Korea in 2002 and 
2004. He received his doctor’s degree in engineering 

from Keio University, Japan in 2009.  

He worked in ROK Army between 1995 and 1998. 
He worked in Korea Institute of Machinery and 

Materials between 2002 and 2004. He has been 
working at UEL Corporation, Japan since 2009. His work field is system 

development of CAD/CAM for the CADmeister.  

 

 
Author’s formal 

photo 

 

 
Author’s formal 

photo 
 

 

International Journal of Materials, Mechanics and Manufacturing, Vol. 7, No. 6, December 2019

239

Mechanical Design, Systems, and Manufacturing. [Online]. 11(4). 

Available: https://doi.org/10.1299/jamdsm.2017jamdsm0049
[5] D. Hamada, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Development 

of CAPP system for multi-tasking machine tool”, Transactions of the 
Japan Society of Mechanical Engineers C, vol. 7, no. 791, pp.

2968-2709, 2012.

[6] T. Okatani, “Deep learning for image recognition,” Journal of 
Japanese Society for Artificial Intelligence, vol. 28, no. 6, pp. 962-974, 

2013.
[7] U. Raghavendra, H. Fujita, S. V. Bhandary, A. Gudigar, J. H. Tan, and 

U. R. Acharya, “Deep convolution neural network for accurate 

diagnosis of glaucoma using digital fundus images,” Information 
Sciences, vol. 441, pp.41-49, 2018.

[8] P. Chunm, A. Igo, Y. Namera, K. Kuroki, and K. Okubo, “Deep 
learning based crack ratio evaluation on asphalt pavement from image

taken by car-mounted camera,” in Proc. the Japan Society of Civil 

Engineers E1, pp I_97-I_105, vol. 73, no. 3, 2017.




