Effects of Different Electrolytes on Microstructure and Antibacterial Properties of Microarc Oxidized Coatings of CP-Ti

L. C. Tsao

Abstract—Titania-based coatings on commercially pure titanium (CP-Ti) were formed by micro-arc oxidation in different electrolyte solutions containing anions such as phosphate (PO4_3) and silicate (SiO$_2^-$). The surface topography, phases, and elemental compositions of the P-TiO$_2$ and Si-TiO$_2$ coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD), respectively. Staphylococcus aureus (S. aureus) was used to evaluate the antibacterial properties of the MAO coatings. The experimental results demonstrated that the P-TiO$_2$ coated sample had an amorphous phase, main anatase-TiO$_2$, and a small amount of P$_2$O$_5$. However, the Si-TiO$_2$ coated samples were composed of SiO$_2$, anatase-TiO$_2$, and amorphous phase. After 24 h of incubation, the antibacterial activities against S. aureus were 96.4% for the P-TiO$_2$ coated sample and 98.6% for the Si-TiO$_2$ coated sample.

Index Terms—Commercially pure titanium, micro arc oxidation, corrosion, antibacterial property.

I. INTRODUCTION

Ti and Ti-based alloys are extensively used in many applications, from aerospace to the biomedical sciences. They have excellent properties, such as high specific strength, good formability, corrosion resistance, non-toxicity, and excellent biocompatibility [1], [2]. New titanium alloys for biomaterials such as Ti-Nb [3], Ti-Cu [4], Ti-Cu-Sn [5] have been developed.

The good biocompatibility and corrosion resistance of these materials are attributed to a thin oxide layer (TiO$_2$ in case of titanium) that forms naturally on the surface of titanium. Typically, the thin oxide layers that form on these metals have an amorphous structure, film thickness of about 3-10 nm, and stoichiometric problems [6]. It is known that the stability of the oxide depends strongly on the composition structure and thickness of the film [7]. Therefore, they are usually used with protective coatings [8].

Various surface modification techniques have been studied for use with Ti and its alloys, examples being anodizing [9], physical vapor deposition (PVD) [10], plasma and laser nitriding [11], and ion implantation surface treatment [12]. In recent years, micro-arc oxidation (MAO) has proven to be a promising surface coating technology for forming thick oxide coatings on aluminum (Al), titanium (Ti), and magnesium (Mg) components [13], [14] and [15]. These thick oxide coatings have a hard ceramic property, good wear resistance, high corrosion resistance, and especially good adhesion between metal and coating in comparison with the conventional anodizing. Chang et al. [16] reported that microstructure characterization of the oxidized TiO$_2$ layer can be greatly affected by the discharge voltage on CP-Ti alloy during MAO treatment. Generally, current density is one of the most important parameters affecting the microstructure and properties of the MAO coating. However, little research has focused on the effects of different electrolytes on oxide coatings on CP-Ti alloys.

In the present study, the effects of different electrolyte systems on the formation of micro arc oxidation ceramic coatings of CP-Ti alloy were analyzed. The morphology, microstructure, phase constituents, corrosion resistance, and antibacterial activity of the MAO coatings were analyzed. The corrosion behavior was also evaluated by potentiodynamic polarization in 3.5 wt.% NaCl solution.

II. MATERIALS AND METHODS

A. Preparation of Samples

The nominal composition of commercially pure titanium (CP-Ti) is shown in Table I. The specimens were cut into squares $20.0 \times 20.0 \times 1.0$ mm, which were polished with different grades of emery papers up to 800 grits and then degreased in pure ethanol alcohol under ultrasonic conditions. The micro-arc oxidation treatment device, illustrated in Fig. 1a [17], consisted of a DC power supply unit, a 316 stainless steel container that also served as the counter electrode and a stirring and cooling system; the samples served as the anode.

| TABLE I: CHEMICAL COMPOSITION OF CP-Ti (WT.%). |
| Fe | N | H | O | Si | Ti |
| 0.08 | 0.02 | 0.012 | 0.10 | <0.04 | Bal. |

The constant current density, applied DC voltage, and duration time were fixed at 33A/dm2, 350V and 30 min, respectively. The electrolyte temperature was maintained within 20 ± 2 ºC. To investigate the influence of electrolyte in the MAO process, the experiment was performed in two
different solutions. For P-TiO$_2$ coating samples, the CP-Ti plates were treated by MAO in 10g/L H$_3$PO$_4$ solution. The Si-TiO$_2$ coating samples were treated by MAO in 10 g/L NaH$_2$PO$_4$ and 20 g/L Na$_2$SiO$_3$ solution. After the MAO processes, samples were cleaned with distilled water and then dried in hot air.

B. Microstructure Analysis

The surface morphology and composition of the treated samples were observed by scanning electron microscopy (SEM) (SEM, Hitachi S-4700, Japan) and energy-dispersive X-ray spectroscopy (EDS, XFlash detector 4010, Bruker, Germany). The crystal phase of the MAO coating sample was analyzed by X-ray diffractometry (XRD, Dmax III-A type, Rigaku Co., Japan) using Cu Kα radiation (λ= 1.5406 Å), a tube voltage of 40 kV, a current of 40 mA, and the range of 20-80º.

C. Corrosion Behavior

Corrosion behavior of the coatings in electrochemical polarization experiments was initiated using a typical three-electrode cell, no stirring, and degassing of the solution at room temperature by an EG & G M273A potentiostat. The reference potential was a saturated calomel electrode (SCE) and a platinum (Pt) counter electrode (diameter 1.5 mm, 20 cm length). All electrolytes were prepared by dissolving high-grade chemicals in high purity deionized water (Millipore Milli-Q SP, 18 MΩ·cm). The specimen surfaces, with an area of approximately 2.829 cm2, were exposed to the 3.5 wt.% NaCl solution at 25 ºC. For dynamic polarization testing, the potential began at 3.5 wt.% NaCl solution at 25 ºC. For dynamic polarization with an area of approximately 2.829 cm2.

D. Antibacterial Activity Tests

The photocatalytic activities of P-TiO$_2$ and Si-TiO$_2$ matrices were evaluated against *S. aureus* under visible light at room temperature (25 ± 2 ºC) by % viability (% survival) of bacteria. The MAO coating samples were sterilized by autoclave at 120ºC for 30 min. The antimicrobial effect was evaluated with the Japanese Industrial Standard (JIS) Z2801:2000 method. This standard is commonly used to estimate the antimicrobial abilities of antimicrobial products [18], [19]. The MAO sample sizes were 5.0 × 5.0 cm. After culture medium containing bacteria (about 0.4 ml) was dripped onto the MAO samples, the samples were covered with film (4.0 × 4.0 cm).

The cell culture medium was a nutrient broth with distilled water diluted 500-fold. The nutrient broth was prepared by diluting beef extract (3.0 g), peptone (10.0 g), and sodium chloride (5.0 g) in purified water (1000 g), with the pH adjusted to 7.0 ± 0.2 using sodium hydroxide or hydrochloric acid.

The bacterial solution with a concentration of 1.8×10^5 CFUs/mL was dripped onto the surface of MAO samples at a density of 0.05 mL/cm2. After the bacteria were cultured for 24 h at 35± 1ºC, the bacteria CFUs were counted in the whole culture. The antibacterial activity was calculated using the following formula [20]:

$$R = \frac{(N_{control} - N_{sample})}{N_{control}} \times 100\% \quad (1)$$

where $N_{control}$ is the average number of the bacterial colony on the control sample at 24 h, and N_{sample} is the average number of the bacterial colony on the MAO sample at 24 h.

III. RESULTS AND DISCUSSION

A. Microstructures

Fig. 2 shows the surface morphologies of the coatings prepared in different electrolytes. It can be clearly observed that the coatings exhibited quite different surface morphologies in the different electrolytes. The surfaces of the P-TiO$_2$ coating samples displayed rough topographies, and the surfaces contained numerous micropores or crater structures, separately and homogeneously distributed over the coatings (Fig. 2a). In our previous study [21], the same phenomenon was also observed. However, the surfaces of the Si-TiO$_2$ coating samples displayed smooth topographies and few micropores. The density of the micropores on the P-TiO$_2$ coating sample was higher than that on the Si-TiO$_2$ coating sample. The cross section and thickness of the coatings (Fig. 2b). In our previous study [21], the same phenomenon was also observed.

TABLE II: EDS ANALYSIS RESULTS OF INDICATED ZONE IN FIG. 2.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Composition (wt.%)</th>
<th>Phase identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TiO$_2$</td>
<td>18.96</td>
<td>75.27</td>
</tr>
<tr>
<td>Si-TiO$_2$</td>
<td>8.76</td>
<td>76.69</td>
</tr>
</tbody>
</table>

**Fig. 5 summarizes the elemental compositions of the P-TiO$_2$ coating and Si-TiO$_2$ coating samples determined on their surfaces by energy dispersive spectroscopy (EDS). The results are summarized in Table 2. Only Ti (18.96 wt.%), O (75.27 wt.%) and P (5.78 wt.%) were detected in the P-TiO$_2$ coating samples. These results suggest that the coating film contained TiO$_2$ and P$_2$O$_7$ phase [21]. In previous work, the TiO$_2$ films were formed on CP-Ti by MAO process by the following steps [23], [24]:

$$\text{SiO}_2^{2-} > \text{PO}_4^{3-} > \text{VO}_4^{3-} > \text{MoO}_4^{2-} > \text{B}_2\text{O}_3^{2-} > \text{CrO}_4^{2-}$$

[22]
\[
\text{Ti/Ti: } \text{Ti} \leftrightarrow \text{Ti}^{2+} + 2e^- \quad (1)
\]
\[
2\text{H}_2\text{O} \leftrightarrow 2\text{O}^{2-} + 4\text{H}^+ \quad (2)
\]
\[
2\text{H}_2\text{O} \rightarrow \text{O}_2 \text{ (gas)} + 4\text{H}^+ + 4e^- \quad (3)
\]
\[
\text{Ti}^{2+} + 2\text{O}^{2-} \rightarrow \text{TiO}_2 + 2e^- \quad (4)
\]

Thus, TiO\textsubscript{2} is major phase in the MAO coating process. Furthermore, it has been reported that both P\textsubscript{2}O\textsubscript{5} and titanium pyrophosphate (TiP\textsubscript{2}O\textsubscript{7}) have been deposited on a sample surface [21]. In Si-TiO\textsubscript{2} coating samples, the elemental composition was Ti (8.76 wt.%), O (75.27 wt.%), Si (13.13 wt.%) and traces of P (1.41 wt.%). This composition suggests that the Si-TiO\textsubscript{2} coating samples had TiO\textsubscript{2} and SiO\textsubscript{2} phases.

Fig. 2. Morphologies of the MAO coating formed on CP-Ti: (a) P-TiO\textsubscript{2} sample; (b) Si–TiO\textsubscript{2} sample.

Fig. 3. Section SEM of the MAO coating formed on CP-Ti: (a) P-TiO\textsubscript{2} sample; (b) Si–TiO\textsubscript{2} sample.

Fig. 4. Thickness of the formed MAO layer in different electrolytes.

Fig. 5. EDS analysis of the MAO coating surface, (a) P-TiO\textsubscript{2} coating samples and (b) Si-TiO\textsubscript{2} coating samples.

Fig. 6. XRD patterns of (a) P-TiO\textsubscript{2} coating samples and (b) Si-TiO\textsubscript{2} coating samples.

B. Corrosion Behavior

The potentiodynamic polarization curves of CP-Ti coated samples are shown in Fig. 7. The corrosion current density...
(I_{corr}), corrosion potential (E_{corr}), critical current density (I_{crit}) and polarization resistance (R_p), obtained by fitting the polarization curves, are listed in Table III. Polarization resistance (R_p) has been used for the kinetics of electrode reactions that can be calculated from the equilibrium potential [26]. It corresponds to the endurance degree of corrosion process [27]. R_p is defined as [28]:

$$R_p = \frac{dE}{dI - E_{corr}}$$

(5)

According to the Stern–Geary equation [29], the analysis of the R_p of MAO coating samples was based on the E_{corr}, I_{corr} and the anodic/cathodic Tafel slopes (β_a and β_c), which were obtained from the measured polarization curves. The corrosion resistance (R_p) value was determined from the relationship [26], [29]:

$$R_p = \frac{1}{2.303 I_{corr}} \left(\frac{\beta_a \beta_c}{\beta_a + \beta_c} \right)$$

(6)

For P-TiO_2 coating samples, E_{corr} = -170.8 mV_{SCE}, I_{corr} = 1.75 μA/cm², I_{crit} = 6.09 μA/cm² were measured. However, the Si-TiO_2 coating samples exhibited an obvious shift in E_{corr} toward the noble direction (-140.7 mV_{SCE}), and a significant one-order decrease in both I_{corr} (0.37μA/cm²) and I_{crit} (6.09μA/cm²). These data corroborated their R_p values. The corrosion resistance of Si-TiO_2 coating samples was higher than that of P-TiO_2 coating samples. The MAO coating developed in the electrolyte solution containing NaSiO_3 had the highest corrosion resistance of SiO_2 phase as compared to the P_2O_5 phase in the P-TiO_2 coating samples. In addition, the corrosion behavior of MAO coated samples had better corrosion resistance than CP-Ti alloy untreated substrate (Table III). Hence, it is clear that the corrosion resistance of CP-Ti was significantly enhanced by the MAO coating process.

TABLE III: THE RESULTS OF POTENTIODYNAMIC CORROSION TESTS IN A 3.5 WT. % NaCl SOLUTIONS

<table>
<thead>
<tr>
<th>Samples</th>
<th>E_{corr}(mV_{SCE})</th>
<th>I_{corr}(μA/cm²)</th>
<th>I_{crit}(μA/cm²)</th>
<th>β_a(mV/decade)</th>
<th>β_c(mV/decade)</th>
<th>R_p(Ohms/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TiO_2</td>
<td>-170.8</td>
<td>1.75</td>
<td>6.09</td>
<td>1019.2</td>
<td>-833.1</td>
<td>1132.1</td>
</tr>
<tr>
<td>Si-TiO_2</td>
<td>-140.7</td>
<td>0.37</td>
<td>0.48</td>
<td>1031.1</td>
<td>-718</td>
<td>2774.9</td>
</tr>
</tbody>
</table>

TABLE IV: COLONY NUMBERS AND THE ANTIBACTERIAL ACTIVITY FOR DIFFERENT SAMPLES AGAINST S. AUREUS BACTERIA.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Negative sample(CFU/ml)</th>
<th>No. of bacteria on the coated samples after 24 h (CFU/ml)</th>
<th>Antibacterial activity(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TiO_2</td>
<td>1.8×10</td>
<td>6.4×10</td>
<td>96.4</td>
</tr>
<tr>
<td>Si-TiO_2</td>
<td>1.8×10</td>
<td>2.5×10</td>
<td>98.6</td>
</tr>
</tbody>
</table>

C. Antibacterial Property

Before the antibacterial behavior of MAO coating samples was examined, a bacterial growth curve for S. aureus was developed. Fig. 8 shows the photos of colony forming units of viable S. aureus after contact with the MOA samples. When exposed to S. aureus, MAO coating samples showed good antibacterial properties, with a kill rate of 96.4 %. Compared to the P-TiO_2 coating samples (96.4 %), Si-TiO_2 coating samples (98.6 %) exhibited a stronger antibacterial action due to the higher concentration of Si in the MAO coated surfaces (Table IV). There are many factors that may reduce bacterial counts on MAO coated samples, such as the morphology, the surface free energy, and the material modified (Ag, Cu, SiO_2). The coating surface is critical to its antibacterial effects. Both Ag and Cu are widely known to be antibacterial agents [30], [31]. Zhang et al. reported that a Ag-modified TiO_2 coating showed excellent antibacterial activity against Escherichia coli (E. coli) within 24 h and that the antibacterial rate gradually rose with increasing contact time [30]. Zhu et al. reported that Cu-incorporated TiO_2 coatings were highly effective at inhibiting the adhesion of S. aureus and exhibited excellent biological activity in promoting osteoblastic adhesion, early
proliferation, and late differentiation [31]. Furthermore, silica nanoparticles have high thermal and chemical stability, high surface area, and good biocompatibility, making them a good option for delivering drugs such as antibiotics [32], [33] and [34]. It is demonstrated that MAO layers incorporating Si can enhance antimicrobial properties.

IV. CONCLUSIONS

In summary, the MAO technique has successfully been used in this study to grow TiO₂ on CP-Ti alloy in different electrolytes. After the MAO process, the P-TiO₂ sample surface was rough and porous, with largely micro-sized pores. The P-TiO₂ film had amorphous phase, main anatase-TiO₂, and a small amount of P₂O₅. However, the Si-TiO₂ sample surface was smooth and had few nano-sized pores. The Si-TiO₂ films were composed of Si₆O₄, anatase-TiO₂, and amorphous phase. It was found that the MAO coatings significantly improved the corrosion behavior of the CP-Ti substrate. The corrosion protection of the Si-TiO₂ coated sample was better than that of the P-TiO₂ coated sample.

The authors acknowledge the financial support of this work from the Ministry of Science and Technology, Taiwan, under Project No. MOST 107-2222-E-020-111-MY2. SEM was performed by the Precision Instrument Center of National Pingtung University of Science and Technology, Taiwan.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Tsao author carry out all works.

REFERENCES

Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

L. C. Tsao is a professor in the National Pingtung University of Science and Technology, College of Engineering, Graduate Institute of Materials Engineering. He received his BS in industry education from National Taiwan Normal University, MS in engineering from National Center University and PhD in Material Science from National Taiwan University.

His research interests cover art material, jewelry design, brazing and casting, with emphasis on materials characterization and the application of materials and mechanical engineering fundamentals to product design. His current research interests are in the areas of the light alloy, 3D powder, special filler, art material and jewelry design.