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Abstract—The multi-relaxation time (MRT) Lattice
Boltzmann method (LBM) was developed to overcome several
constraints, which are inherent to the more famous single
relaxation time (SRT) Bhatnagar–Gross–Krook (LBGK)
model. Constraints, such as fixed Prandtl number, fixed ratio
between kinematic and bulk viscosity, and Reynolds number
limitations undermine the SRT usefulness. Furthermore, the
SRT method fails to accurately characterize high viscosity
fluids’ behavior near the domain’s walls, an issue which can be
circumvented with the MRT method. However, the MRT
requires a careful selection of its relaxation parameters for
achieving the desired outcome. The ad-hoc nature of this
selection makes the method cumbersome, especially for three-
dimensional (3D) domains. Additionally, it is known that the
MRT solution requires about 10% - 15% more computational
time than the SRT for the same domain size.
Four widely used single-phase flow conditions were explored

by using the SRT and the MRT methods. It is shown that the
SRT has good accuracy when used for simulating low viscosity
fluid cases; however, the SRT exhibits a non-physical velocity
jump at the domain surface boundaries when used for
simulating high viscosity fluid flows. This issue can be resolved
by augmenting the SRT domain’s height, which in turn leads to
an increase in the required computational time. The main
advantages of the MRT are due to its capability in overcoming
the velocity jump in most of the high viscosity fluid cases and
in its ability to simulate flows with ultra-low viscosities, which
was demonstrated in the characterization of the flow around
S822 airfoil with Reynolds number Re 40,000 .

Since its inception, the MRT LBM presented an
interesting simulation platform, which attracted the attention
of several researchers, who tried to analyze, further develop
and use it for simulation cases, which were inaccessible to
the SRT LBM users. Lallemand and Lue [2] obtained a
generalized hydrodynamics (wave vector dependence of the
transport coefficient) by solving the dispersion equation of
the linearized lattice Boltzmann equation either analytically
or numerically. The authors applied the concept for
selecting the adjustable parameters to optimize dispersion,
dissipation, anisotropy and the Galilean invariance of their
model. The generalized hydrodynamics was used to study
the stability of two-dimensional shear flow with shock, in
which the simulation results matched their theoretical
analysis. D’Humières et al. [3], extended the MRT method
to D3Q15 and D3Q19 three-dimensional domain, to
simulate lid-driven cavity flow for Reynolds numbers up to
Re = 2000. J.-S. Wu, Y.-L. Shao [4] simulated two-
dimensional near-incompressible steady lid-driven cavity
flows with Reynolds number between 100 and 7500 by
using MRT and LBGK models. The results were compared
with Navier-Stokes simulation results for the same flow
domain and flow conditions. The authors reported that the
MRT was able to improve the solution convergence, to
decrease the spatial oscillations near sharp edges as well as
it was successful in simulating high Reynold number cases.
The improvements were due to the different relaxation rates
used for different physical modes, which were embedded in
the MRT scheme. Rui et al. [5] proposed an incompressible
MRT LBM, with the equilibria in momentum space were
derived from a previous LBGK model for incompressible
flow proposed by Guo et al. [6]. The Model was
successfully applied to steady state Poiseuille flow, cavity
driven flow and double shear flow in 2D domains. Jafari S.
and Rahnama M. [7] used the generalized lattice Boltzmann
equation for the computation of turbulent channel flow and
compared successfully their results for mean velocity
distribution, turbulent statistics and vortical structures with
the large eddy simulation with shear-improved Smagorinsky
model for the subgrid-scale turbulence effects. The model
showed good numerical stability and ease in parallelization.
E. Aslan et al. [8] studied the classical case of the two-
dimensional lid cavity for incompressible steady laminar
flow using the SRT and the MRT methods. For high
Reynolds numbers ranging between 200 and 2000, the
results were compared with the finite-volume predictions of
the incompressible Navier-Stokes equations. The MRT
showed more stable results than the SRT for high Reynolds
numbers. The authors compared the convergence speed
between MRT and SRT within the stability range, and they
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I. INTRODUCTION

The MRT LBM was introduced by D’Humières [1] to
overcome defects inherent to the Lattice gases, which
suffered from important statistical noise due to averaging
Boolean variables for calculating the macroscopic variables.
At the time, when several researchers simulated the motion
of particles by their occupation number rather than their
Boolean occurrence and used a relaxation process towards
equilibrium prescribed by the kinetic theory, D’Humières
suggested the addition of new degrees of freedom for the
choice of equilibrium distribution.
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found that the LBM- SRT was about 10% faster than the
MRT and that both simulation time were greater than the
general-purpose finite-volume based CFD code. Suga et al.
[9] developed a D3Q29 for the simulation of turbulence in
fully developed channel, pipe and porous media with round
wall boundaries for the latest two. The model results
correlated well with the results of direct and large
simulations.
Furthermore, the MRT method was successfully used in

the study of calculation of friction coefficient and analysis
of fluid flow in a stepped micro-channel for wide range of
Knudsen number [10]. Same method was employed in the
study of soli-liquid phase change [11], mixing in an active
micromixer with rotationally oscillating stirrer in high
Peclet number flows [12], for investigating of three
dimensional MHD natural convection [13] and for
simulating laminar and transition flows in natural
convection cases [14].
Several LBM airfoil studies were published in recent

years. Among them is the work of Imamura et al [15], who
extended the LBM algorithm to generalized coordinates.
The authors results matched very well those from CFL3D.
The model was combined with the Baldwin-Lomax
turbulence model for improved results for high Reynolds
numbers. Imamura et al. [16] applied the local time step
method on non-uniform grid to simulate flow around airfoil
in order to validate the code with the local time step method.
The authors’ results for pressure distribution and
aerodynamic coefficients were consistent with previous
study. Imamura et al. claimed a reduction of 70-80% of
CPU time compared to solutions with global time step.
Rajani et al., [17] utilized LBM based very large eddy

simulation approach, to simulate the flow around semi-span
NACA0012 airfoil with rounded tip. Their results for mean
pressure coefficient, mean velocity field distribution and the
location of the vortex core agreed with experimental data.
Rajanial, [18] studied the time averaged mean flow fields
for multi-element airfoil with several attack angles around
the slat cove and compared successfully their simulation
outcome with experimental data and a Navier-Stokes based
numerical solution.
Xiao-Peng Chen [19], who used MRT-LBM scheme

coupled with the Spalart-Allmaras turbulence model to
simulate the two-dimensional turbulent flow around
NACA0012 airfoil, with Re=105 and angle of attack α = 4○.
Xiao-Peng Chen refined the mesh around the airfoil and
used the no-slip boundary condition at the lower and upper
boundaries, the non-equilibrium extrapolated method for
constant velocity and pressure conditions at the inlet and
outlet boundaries, respectively. Chen validated his model
via a direct comparison with the SST and the SST-γ-Reθ
model by Counsil and Boulama [20]. The model was able to
capture the flow separation, which was indicated in the
pressure coefficient on the airfoil surface, while maintaining
a small difference in predicting the Cp value in the flow
separation region.
Amin Poozesh and Masoud Mirzaei [21], used the

interpolation lattice Boltzmann method for simulating the
unsteady fluid flow around a cambered airfoil in a non-
uniform grid. The author’s used the SRT-LBM with
adaptive mesh generation for the study of incompressible
viscous flow around a cambered airfoil for a range of angles

of attack α = 0 – 15 and low Reynold number Re = 1000
with free stream velocity of 0.1 m/s. The Strouhal number,
the pressure, the drag and the lift coefficients, which were
obtained from the simulations agreed well with classical
computational fluid dynamics simulations. The main
advantages of this simulation method were the ability to
choose complex geometry, to predict the vortex behind a
vertical plate symmetrical and non-symmetrical at high
angles of attack and finally exploit the power of parallel
computing.
Prabhukhot P. and Prabukhot A. [22] used ANSYS fluent to
study the behavior of S822/S823 blade profile at various
contours and reported a maximum turbulence and minimum
pressure near the trailing edge of the blade’s tip.
In this work, the MRT and SRT methods are

implemented for simulating fluid flows under very useful
conditions such as simple shear flow, uniaxial extensional
flow, flow between two parallel plates with velocity inlet
and extrapolation outlet boundary conditions and two
parallel plates’ flow with constant source term (pressure
drop per unit length). This is to provide users’ guidance for
selecting the most optimal approach for the simulation
problem in question and to avoid the generalization that the
SRT is exclusively inferior and inaccurate as compared to
the MRT. The validation of the basic cases is done through a
comparison with available theoretical solutions.
Additionally, it is shown that the MRT method can be

used to calculate the lift and drag coefficients for S822
airfoil for attack angle of 5.25 degree and Reynolds number
Re 40,000 . The coefficients are computed via a simplistic
approach, which does not require irregular mesh and data
extrapolation. The MRT results agree well with the results
of Xfoil [25] using turbulence index Ncrit = 5.

II. NUMERICAL METHOD

A. LBGK Model
The single relaxation Bhatnagar-Gross- Krook (BGK)

lattice Boltzmann (LBM), single-relaxation model used in
this work, is based on the Boltzmann kinetic equation:

1 ( )eqdf f f f
dt 

      (1)

where f is the density distribution function,  is the

macroscopic velocity, eqf is the equilibrium distribution
function, and  is the physical relaxation time. Equation
(1) is first discretized by using a set of velocities
 i confined to a finite number of directions and this leads
to the following equation:

1 ( )eqi
i i i i

df
f f f

dt 
      (2)

The lattice links for the D2Q9 BGK used in this work are
shown in Fig. 1. These links have the following endpoints
coordinates:

0 1 2 3 4

5 6 7 8

(0,0); (1,0); (0,1); ( 1,0); (0, 1);
(1,1); ( 1,1); ( 1, 1); (1, 1)

c c c c c
c c c c

 

   
(3)
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Fig. 1. Velocity vectors for the D2Q9 lattice Boltzmann method used in this
model.

In the LBM Eq. (2) is further discretized in the lattice
space and time which leads to the following:

1( , ) ( , ) [ ( , ) ( , )] ( )eq
i t i i i if x t f x t f x t f u x   


    


(4)

The lattice space x and the lattice time step t are taken as
unity and their ratio 1x tc    . The lattice speed of sound

/ 3sc c is used for determining the fluid pressure
by 2

sp c , and the lattice relaxation time is / t   . The
kinematic viscosity is derived from the relaxation time by
the following:

2( 0.5) s tc    (5)

The relation between the macroscopic and spatially
varying lattice source term, is given by Guo et al. [12]:

2 2 4
( )1( ) 1 ( )

2
i i i

i i
s s

k
c c

 


        
    

c u c u cx F x (6)

where, 2 i i i i
i

k e e e     and i are weighting

constants.
The streaming step is executed by the following equation:

( , ) ( , )i i t t i tf t f t     


x c x (7)

where, ( , )i tf t 


x is the post collision’s density distribution
function. The macroscopic density and momentum are
obtained from the distribution function as follows:

1 1

0 0

Q Q
eq

i i
i i

f f
 

 

   (8)

1 1

1 1

Q Q
eq

i i i i
i i

f f
 

 

  u c c (9)

B. The MRT Method
The multi-relaxation time (MRT), known as the

generalized lattice Boltzmann equation (GLBE) or moment
method, helps overcome some of the main constraints of the
single relaxation (SRT) or LBGK model. Following the
footsteps of D’Humiers et al [3], Lallemand and Luo [2] and
other, the MRT method is implemented via mapping the
population space to moment space and by using the Gram-
Schmidt matrix approach for D2Q9:
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where, M is 9 9 matrix used to transform f from the
discrete space into F in the moment space. In the column
vector F ,  is the fluid density,  is a function of the
square of the energy e , xj and yj are the mass flux in the

horizontal and vertical directions, xq and yq are the energy

flux in the horizontal and vertical directions, xxp and xyp

correspond to the diagonal and the off-diagonal components
of the viscous stress tensor.
The equilibrium moment vector can be obtained by
eq eqF M f to a second order in velocity. A more efficient

way is to find analytical expressions for the vector elements
as functions of the velocity and density:
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The collision state is executed in the moment space by the
following:
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The relaxation parameters represent the diagonal
elements of the matrix S :
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where 0 3 5, ,s s s are related to the conserved moments of the
density and momentum, which are invariant and therefore
these parameters values do not matter. The parameter 1s is

related to the bulk viscosity, and 7 8
1s s


  determine the

shear viscosity. The rest 2 4 6, ,s s s are free parameters used to
tune the model. The transformation back from the moment
space into the population space is given by:

* 1 * 1 eqf M F f M S F F       
(14)

where 1M  is the inverse of the transformation matrix
M and *f is the post collision distribution function in the
population space. The shear kinematic viscosity  is
calculated by Eq. (5) and the bulk kinematic viscosity is
calculated by 2

1

1 1( )
2 3s tc

s
    .

The MRT streaming step is executed in a similar fashion
by Eq. (7) and the macroscopic velocity and density are
computed by Eq. (8) & (9).

III. SIMULATION AND DISCUSSION

In the following simulations, basic flows which are used
extensively in investigating variety of fluid flow problems,
are simulated by the SRT and MRT methods, in two-

dimensional domains (2D). This is to highlight the strength
and weakness of each of these methods.
Analysis of simple shear flow, uniaxial extensional flow

and flow between two parallel plates under two different
boundary conditions (fixed inlet velocity with the
extrapolation method and pressure gradient) will be
presented to expose the difference in the outcome of the
SRT and the MRT methods. The simulated velocity profiles
deviation from their corresponding theoretical solutions,
will be used as indicators of the accuracy of either one of
these two methods.

A. Simple shear flow
The domain size used in the subsequent simulations is

basically a square 2125 125 lu unless specified, with a top

wall velocity range 3 1 110 10U lu ts       and with

similar magnitudes but negative sign at the lower wall. The
unit [lu] stands for lattice space unit and [ts] for lattice
timestep. The relaxation times used in the simulations were
set to 0.5263  and 40  , for two limiting cases. This
led to kinematic viscosity 2 10.008772 lu ts     and

2 113.167 lu ts   for the two cases, respectively. The

density used in both cases was 32 lmu lu     . The

periodic boundary condition was imposed on the horizontal
inlet and outlet surfaces. The velocity profile for Couette
flows is given by:

2

1
2

u y b p y y
U b U x b b

          
(15)

For simple shear flow characterized by zero pressure
gradient in the horizontal direction, the equation simplifies
to:

u y
U b

 (16)

The velocity profile dependency on the viscosity of the
fluid, shear strain rate and domain height are analyzed here.
The comparison is executed by calculating the absolute
relative error from the slopes of the curve fitted SRT and
MRT simulation results sS , mS and the slope of the
theoretical solution TS . These slopes are constant since the
simulated fluids are Newtonian.

As shown in the left section of Fig. 2, which depicts the
low viscosity fluids with wall velocity 2 110U lu ts     ,

both the SRT and the MRT methods produce reasonable
results with absolute relative errors

 
, 0.0121T s

slope srt
T

S S
abs

S


 
  

 
and

 
, 0.0099T m

slope mrt
T

S S
abs

S


 
  

 
for the SRT and MRT

methods, respectively. The results shown in the right section
of Fig. 2 for the high viscosity fluids, show a discrepancy in
the outcome of the SRT method and a velocity jump at the
wall, while the MRT method produces very accurate results.
The following absolute relative errors , 0.3679slope srt  and

, 0.001slope mrt  are reported for the SRT and MRT methods,
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Fig. 2. Left: Simple shear flow profiles for low viscosity flows using the SRT and MRT methods. Right: simple shear flow profiles for high viscosity flows
using the SRT and MRT methods. Both graphs display the linear curve fit equations for all conditions.



respectively.
The inverse of the relaxation time used for the light

viscosity fluid was 1.9l  and the inverse of the relaxation
time used for the high viscosity fluid was 0.025h  . The
relaxation parameters used for the simulation of the low and

high viscosity cases are  
 1 2 4 6

2
1.6, 1.8, 8

8
s s s s





    


.

In the next simulations the wall velocity was varied in the
2125 125 lu domain such that, the shear strain rate

changed from
.

3 11.613 10 ts    to
.

5 11.613 10 ts    .
With the low viscosity fluid, the MRT method shows some
discrepancies close to the walls with high shear strain rate,
while the SRT does not exhibit any dependency on the shear
strain rate. No issues are recorded for the same cases with
the low shear strain rates. The following absolute relative
errors , 0.0066slope srt  and , 0.0768slope mrt  are reported for

the high
.
 with low viscosity fluid, while absolute relative

errors , 0.0226slope srt  and , 0.0219slope mrt  are calculated

for the low
.
 with low viscosity fluid. The high viscosity

cases resulted in relative errors , 0.3679slope srt  for the high

and low
.
 by the SRT method, while relative errors

, 0.0046slope mrt  and , 0.0011slope mrt  are recorded for the

high viscosity cases with the low and high
.
 , respectively.

The discussion of Ginzbourg & Adler [27] about the
influence of the domain height, on the error of the LBM
solution for Poiseuille flow, indicated that the error was of
the same order of 1

z , where z was the domain height. This

motivated the need for exploring the domain height’s
influence on the SRT solution in the subsequent simulations.
The main weakness of the SRT method is observed as a
jump in the velocity near the wall boundaries in high
viscosity fluid flows. In the next simulations, the domain
height was changed within a range of 200 3300 lu . The

shear strain rate was maintained at 4 11.613 10 ts    .

TABLE I: THE SLOPES’ ABSOLUTE RELATIVE ERRORS AS A FUNCTION OF
THE DOMAIN HEIGHT

Domain
Heights 200 300 600 1400 3300

ɛslop,srt 0.2723 0.2023 0.114 0.054 0.0383
ɛslop,mrt 0.001 0.001 0.0007 0.0178 0.0275

The results shown in the Table I, indicate a diminishing
trend in the slopes’ relative error of the SRT with the
increase in domain height, meanwhile the MRT is
indifferent to the changes in domain height.

B. Uniaxial Extensional Flow
Uniaxial extensional flows are used in variety of

industrial applications. In uniaxial extensional flows, the
fluid is sucked out of the domain in one direction (horizontal
in the current simulation). The top and bottom boundaries
are set as fluid sources where the flow is pulled in the
vertical direction with the same inlet velocity magnitude for
conserving the mass flow rate. The uniaxial extensional
flow is imposed in 2D domains by applying a constant shear
strain rate as follows:

 
1 0
0 1

  
   
u x x (17)

A domain size consisting of 2125 125 lu was used, with

shear strain rate range 6 4 14.03 10 4.03 10 ts          

acting on the left and right horizontal boundaries. The
relaxation times used in the simulations, were

0.58823  and 40  , leading to kinematic viscosity
2 10.02914 lu ts   and 2 113.167 lu ts   ,

respectively. The density used in both cases was set
to 32 lmu lu   .
In Fig. 3, the left section shows the flow streamlines

superimposed on the vertical velocity contour in gray scale
and the right section depicts the flow streamlines
superimposed on the horizontal velocity contours. The
central part shows the horizontal velocity xu as a function of
the y vertical coordinate at different positions in the
horizontal direction. It is worth noting that theoretically at
any constant vertical position, curve fitting of the horizontal
velocity magnitudes shown in blue circles, should yield a
linear relationship with a slope equals to  . However, it is
much easier to judge the accuracy of the SRT and MRT
methods in uniaxial extensional flows, by assessing the
conservation of mass at the inlet and outlet boundaries of the
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Fig. 3. Left: Extensional flow streamlines superimposed on the vertical velocity contours. Central top: horizontal velocity profiles in the first and fourth
quadrant as function of the vertical coordinate at different horizontal positions. Right: extensional flow streamlines superimposed on the vertical velocity

contours.



domain. This is to be complemented by checking the
symmetry of the horizontal velocity profile (mirror image)
between the first and fourth quadrant and second and third
quadrant at a horizontal location in the domain, which was
selected arbitrarily as  115x lu .
The velocity profile dependency on the viscosity of the

fluid, shear strain rate and domain’s height are reviewed in
the subsequent simulations. A constant shear strain rate

5 14.03 10 ts        was imposed on the left and right

boundaries. For the high viscosity cases, the SRT velocity
exhibits two jumps, while the MRT show a much smoother
behavior. However, the results are almost identical for the
low viscosity cases. The mass flow rate through the
horizontal boundary is designated by xm , while the mass

flow rate through the vertical boundary is designated by ym .

The mass flow rate absolute relative error is calculated by

 x y
mfr

x

m m
abs

m


 
 
 
 

 


. The following relative errors

, 0.00511mfr srt  and , 0.00346mfr mrt  are recorded for the
low viscosity cases with the SRT and MRT methods,
respectively. The high viscosity cases calculation yields
absolute relative errors , 0.00772mfr srt  for the SRT method

and , 0.00531mfr mrt  for the MRT method. Therefore,
beside eliminating the velocity jumps, the MRT method can
slightly improve the mass conservation of flows with high
viscosity. The inverse of the relaxation time for the light
viscosity fluid is 1.7l  and for the high viscosity fluid is

0.025h  .The relaxation parameters used for the
simulations of both high and low viscosity cases are

 
 1 2 4 6

2
1.2, 1.2, 8

8
s s s s





    


.

Fig. 4. Left: horizontal velocity profile for both the SRT and MRT methods for the low viscosity cases. Both methods yield results which match very well
the theoretical profile. Right: horizontal velocity profile for flow between two parallel plates for the high viscosity flow.

The next two simulations were executed with the same
domain size, high viscosity 2 113.167 lu ts   and two

different shear strain rates 6 14.03 10 ts        and
4 14.03 10 ts        . The two high viscosity cases with

the MRT method, have the following absolute relative errors
, 0.0076mfr lsr  and , 0.04mfr hsr  , which indicates a

deterioration in the accuracy as the shear strain rate
increases. However, the MRT method can eliminate the
velocity jumps irrespective of the shear strain rate values
used in the simulation
Several cases were executed with kinematic

viscosity 2 113.167 lu ts   and multiple shear strain rate

with a range of 5 14.03 10 ts        and increased

domain height from  125H lu to  200H lu . The domain
height does not improve the solution in uniaxial extensional
flows with the SRT method.

C. Flow between Two Parallel Plates: Fully Developed
Flow
Flow between two parallel plates are commonly used in

variety of simulation cases. The velocity profile for flows
between two parallel plates with constant source term is
described by:

 2 21
2

pu y h
x


 


(18)

where p
x



is the pressure drop per unit length,  is the

dynamic viscosity of the fluid and h is half of the domain’s
height. The domain was a square 2125 125 lu unless
specified. Two limiting cases with kinematic viscosities

2 113.167 lu ts   a nd 2 10.0294 lu ts   were

applied. The density of the fluid was set to 32.0 lmu lu   .
The periodic boundary condition was used for inlet and
outlet surfaces along with the second order accurate bounce
back condition on the bottom and top walls.
The velocity profile dependency on the viscosity, source
term and domain height for the flow between two parallel
plates are analyzed here. The source term for imposing the

pressure drop per unit length was set to 42.5 10p 
 


in

the following simulations.
The graphs in the left section of Fig. 4, show that for the

cases of low viscosity both methods yield reasonable results
when compared with the theoretical solution and their
velocity profiles conform with the theory. Meanwhile the
SRT method’s results for the high viscosity case in the right
section of the figure, indicate a velocity jump at the wall and
the velocity profile exhibits large deviation from the
theoretical solution. On the contrary the MRT shows very
good match with the theoretical solution for the high
viscosity case. The error in the solution is assessed by using
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the central velocities in the calculation of the absolute
relative error. The high viscosity cases have the following
absolute relative errors 0, 1.9y srt   for the SRT method and

0, 0.0y mrt   for the MRT method. While absolute relative

errors 0, 0.0138y srt   and 5
0, 7.4 10y mrt 

   are reported
for the low viscosity cases with the SRT and MRT methods,
respectively. The inverse of the relaxation time for the light
viscosity fluid is 1.7l  and the same for the high viscosity
fluid is 0.025h  . The appropriate relaxation parameters
for the simulation of the low viscosity MRT case were
found iteratively, and are reported as
1 2 4 61.7, 1.6, 1.8s s s s    , while the suitable
parameters for the simulation of the high viscosity case are
given by 1 2 4 60.6, 1.8, 0.4s s s s    .

The case with the high viscosity 2 113.167 lu ts  
was executed twice again with two different source

terms 32.5 10p 
 


and 52.5 10p 

 


to check the

influence of the source term on the MRT method’s accuracy,
in flows between two parallel plates. The absolute relative
errors for the high source term are 3

0, 1.63 10y mrt 
   and

0, 0.0y mrt   for the low source term. This indicates that the
MRT accuracy increases with the decrease in the value of
the source term.
Several SRT cases were executed with a kinematic

viscosity 2 113.167 lu ts   and a source term

42.5 10p 
 


but the domain height was increased up to

 4000h lu  . The results indicate that increasing the
domain height improves the SRT solutions. Absolute
relative errors 125, 2.376srt  ,

4001, 0.0308srt  and 8001, 0.0012srt  are recorded for the
three simulation cases with the SRT method. Increasing the
domain height has a very profound influence on the results
of the simulations for flows between two parallel plates.

D. Flow between Two Parallel Plates: Developing Flow
Developing flows are achieved by applying a parabolic

velocity boundary at the inlet of the simulation domain and
treating the outlet boundary with the first or second order
extrapolation method. The top and bottom wall conditions
are imposed by using the second order bounce back method.
The parabolic flow at the inlet boundary is imposed by using
the following equation:

(0, , )
2

(0, , ) 2

4 ( )H t

y t

U y H y
U

H



 (19)

The velocity profile dependency on the fluid viscosity,
the inlet boundary velocity and the domain’s height of the
developing flow behavior are analyzed here. The flow
velocity profile in the subsequent simulations is tracked by
comparing the profile at the outlet boundary to that of the
inlet boundary condition, which is indicative of the
transformation of the flow from developing to fully
developed flow after achieving steady state condition. The
domain is 2125 125 lu and the inlet boundary has a
parabolic velocity profile with central velocity

22.5 10c
luU ts

  . Two limiting cases characterized by
2 10.055 lu ts   and 2 113.167 lu ts   are presented

in Fig. 5. The curves in the figure indicate that both SRT
and MRT fail to achieve the condition of fully developed
flow for the high viscosity case, and they both exhibit
velocity jump near the wall. The cases with the low
viscosity from both the MRT and SRT methods, show a
very good match between the inlet velocity profile and the
outlet velocity at the exit boundary. This indicates that fully
developed flow condition is achieved.
The central velocity deficit expressed by

,

,

1 100c outlet

c inlet

U
abs

U


 
    

 
is used to assess the performance of

the two methods. The following deficits are reported for the
light viscosity SRT and MRT cases, as well as for the heavy
viscosity SRT and MRT cases as , 0.1%lv srt  ,

, 0.23%lv mrt  , , 43%hv srt  and , 50.8%hv mrt  .

Fig. 5. Left: velocity profile comparison of the MRT and SRT at the outlet boundary with respect to the inlet boundary for the low viscosity cases. Right:
velocity profile comparison of the MRT and SRT at the outlet boundary with respect to the inlet boundary for the high viscosity cases.

The same conditions from the previous simulations were
used again. However, the inlet boundary central velocity
was changed to 32.5 10c

luU ts
  in one run and to

11.5 10c
luU ts

  in the second. The kinematic viscosity

2 10.055 lu ts   was maintained in both simulations.
The results indicate that the change in the central velocity
magnitude influences moderately the accuracy of the results
from both the SRT and MRT methods for the low viscosity
cases. The central velocity deficit for the two cases with low
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velocity are reported as , 0.52%lvel srt  , , 0.52%lvel srt  and

, 0.046%hvel srt  , , 0.061%hvel mrt  are found for the high
velocity cases. The relaxation parameters used for all the
above MRT cases are 1 2 4 61.6, 1.6, 0.5s s s s    , but

the case of the higher velocity with 0.15luU ts , required

the following relaxation parameters:
1 2 4 60.3, 1.0, 0.9s s s s    .
Two runs with inlet boundary central velocity set
to 22.5 10c

luU ts
  and kinematic

viscosity 2 113. lu ts   were used for investigating the
domain height effects on the accuracy of the SRT and MRT
method. Multiple domain heights were investigated
between  200H lu and  3800H lu . Both the MRT
methods can match the theoretical velocity profile with the
increase in the domain height. The central velocity deficit
for the two cases are 200, 25.83%srt  and

200, 30.75%mrt  for the lower domain height and

3800, 0.036%srt  , 3800, 0.032%mrt  for the increased
domain height velocity.

IV. FLOW AROUND S822 AIRFOIL

In developing flow simulations, the MRT is not superior
to the SRT, since it does not offer an improved solution for
fluids with high viscosity. Meanwhile the SRT matches the
MRT accuracy for fluids with low viscosity, however, the
basic advantage of the MRT scheme is due to its capability
of simulating flows with high Reynolds number. Unlike the
SRT scheme which is capped by a relaxation
time 0.562  for flows between two parallel plates, the
MRT offers the opportunity to use a relaxation time as low

as 0.50075  .
In the following the MRT is used for analyzing the flow

around S822 airfoil. The LBM presents an opportunity for
simulating such a complex phenomenon via a simplistic
approach. It is well known that the LBM offers a
computationally cheap and reasonably accurate second order
bounce-back boundary condition. The bounce back is used
on the upper, the lower walls and on the external surface of
the foil in a 2D domain. Domain size 24500 1000 lu was
used to simulate the test portion of an airfoil wind tunnel as
described in [23]. To achieve a reasonable fine mesh the
cord length was set to 1000c lu , which was used as the
reference length. The parabolic inlet velocity boundary was
imposed by using a central velocity 21.0 10c

luU ts
  .

The central velocity was divided by the reference length to
get an inverse of the reference time 5 11.0 10ref ts    . The
cord’s Reynolds number for the simulation was calculated
as 39,940Re  .
The foil lift and drag forces are calculated by the

following formulae:

( )

( )

t
L x y

S

t
D y x

S

v
F n Pn dS

n
v

F n Pn dS
n






  




 





(20)

where LF is the lift force, DF the drag force,  is the fluid
dynamic viscosity, P is the local pressure, tv is the

tangential velocity, and ,x yn n are the x and y components
of the normal to the contour of the foil S . The shear stress
influence is included in the simulation, although its
contribution is very marginal at such high Reynolds number.
A phase field function is used to identify the foil external
surface and it is calculated as follows:

Fig. 6. Left top: pressure contour, vertical velocity contour and streamlines for flow around S822 airfoil withRe 39,940 and 5.25 degrees angle of attack.
Right top: streamlines for flow around S822 airfoil for the same conditions. Right top: lift and drag coefficients as a function of dimensionless time. Left
bottom: MRT lift coefficient comparison with Xfoil results and turbulence amplification factor Ncrit = 5. Center bottom: MRT drag coefficient comparison
with Xfoil results and Ncrit = 5. Right bottom: MRT drag versus lift coefficients comparison with Xfoil results and Ncrit = 5.
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


 x
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x
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where, ( , )t x is the fluid local density. This leads

to ( , ) 1.0N
t x in the fluid domain, while the boundary

nodes are assigned with ( , ) 0.0N
t x to enable the

calculation of the phase field gradient N which is used
to track the solid boundary and to execute the calculation of

the normal to the surface by:
N

N




 n 


The vertical yn and horizontal xn components of the

normal vectors are used in the calculation of the tangential
velocity used in Eq. (20) for finding the lift and drag forces.
The components of the tangential velocity are computed by
the following:

2

2

tx x x x x y y

ty y y y x y x

u u n u n n u

u u n u n n u

  

  
(22)

The derivative of the tangential velocity from Eq. (22) is
calculated by the two points backward scheme at the fluid
nodes adjacent to the foil surfaces, where the difference
is t tdv v , while the step in the normal direction is

calculated by  1ydn abs n .

The one-third Simpson method is used to calculate the
integrals for the lift and drag forces as follows:

         
1

2,4,6,... 3,5,7,...
4 2

3

N Nb

i ja
i j

hI I x dx I a I x I x I b


 

 
     

 
  (23)

where, the step in the integral is estimated by Sh
C

 and C

is determined by setting a counter for the number of foil
boundary nodes, which constitute the external contour of the
foil. The length of the foil is calculated by:

  2'1
b

a
S f x dx     .

where,  f x is the foil set of shape equations used to create

the foil geometry in the 2D domain.

The drag and lift coefficients are calculated by the
following equations:

2

2

2

2

L
L

D
D

F
C

U D
F

C
U D









(24)

The pressure contour, the horizontal velocity contour and
the streamlines of the flow around NRL S822 airfoil with
5.250 attack angle, bounded by top and bottom walls as is
the situation in a wind tunnel testing, are shown in the top
left part of Fig. 6. The right top section of the figure
illustrates the lift and drag coefficients evolution with
respect to a dimensionless time as an indication of the
solution convergence. The bottom left side of the figure
shows the MRT solution for the lift coefficient as compared
to XFoil’s outcome [24], which is usually used for guidance

in airfoil wind tunnel testing [25]. The bottom center of the
figure shows the MRT solution for the drag coefficient and
the bottom right is the drag coefficient as a function of the
lift coefficient, in comparison with the XFoil solution.
The presented results of the simulations in Fig. 6 were

achieved at a dimensionless time step 18.24reft  with a

convergence criterion 86.5 10   . The results show a
reasonable agreement with the results of Xfoil for the S822
airfoil with turbulence amplification factor Ncrit = 5 and
cord’s Reynolds number Re 50,000 .
The relaxation parameters for the presented case are

1 2 2 40.01, 1.1, 1.2s s s s    .

V. CONCLUSION

The Boltzmann MRT and SRT methods are used in basic
fluids flow simulations for delineating the advantages and
disadvantages of both methods. It was shown that there are
wide variety of flow conditions where the SRT method can
be used successfully, and that even though the MRT is very
powerful, it fails in overcoming all the shortfalls of the SRT
methods.
For simple shear flow, the MRT can always eliminate the

velocity jump at the walls exhibited by the SRT for fluid
flows characterized by high viscosity. The MRT, however
shows some inaccuracy at the walls for simulations
involving low viscosity fluids and high shear strain rate. In
the simulation of simple shear flow with the use of the SRT
method, the domain height can eliminate the velocity jump
at the walls under all conditions. While the SRT can
accurately describe fluids flow with low to moderate
viscosities.
For uniaxial extensional flow, the MRT method show

superiority over the SRT at all levels. The domain height in
the SRT method cannot be used for correcting the velocity
field in this type of flows. The SRT method is generally
accurate for low to moderate viscosity fluids subjected to
extensional flow conditions.
For fully developed flows between two parallel plates, the

MRT excels in providing accurate results for high viscosity
flows under variety of source terms. The domain height in
the SRT method can be used for eliminating the inaccuracy
of the results for high viscosity fluid flows.
For developing flow between two parallel plates, the

MRT does not show any advantage over the SRT method
for cases with high viscosity fluids. Meanwhile the domain
height has a major influence on the accuracy of the results
for both MRT and SRT methods. In general, the SRT
method is accurate for simulating low to moderate viscosity
fluids, although high central velocities can moderately
deteriorate the results. The main advantage of the MRT over
the SRT method is due to its capability to simulate flows
with ultra-low fluid viscosity, and hence large Reynolds
numbers as this was shown in the simulation of flow around
S822 airfoil.
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