
 

Abstract—This paper demonstrates a novel computational 

method intended to develop inspiration from a synthesis of 

carbon nanotubes. The proposed method is Artificial Carbon 

Nanotubes Synthesis Optimization (ACNSO). In this paper, 

one of the first applications has been executed in the blood 

vehicle routing problem and has been demonstrated. This 

algorithm was tested on three sizes of benchmarking datasets 

of the blood vehicle routing problem. The advantage of this 

algorithm is to check the travel conditions between the points 

before creating the initial solution. As a result, the overall 

processing time is reduced. However, this research presented a 

definition of the appropriate parameters of this algorithm for 

the optimal solution. The design of the experiment is adopted 

to investigate the factors affecting the performance of the 

algorithm.The experiments were conducted to compare the 

efficiency of the other algorithms in previous research in terms 

of the distance. 
 

Index Terms—Metaheuristic approach, artificial carbon 

nanotubes synthesis optimization, blood vehicle routing 

problem, design of experiment. 

 

I. INTRODUCTION 

Nowadays, metaheuristic approaches are used for solving 

optimization problems due to the speed requirements when 

using big data which must be processed through several 

techniques simultaneously. Mostly the concept of 

metaheuristic approaches is inspired by biology and physics, 
Heuristic is a root word derived from Greek and means to 

find or to discover through exploration by a trial and error 

method [1]. As a result, the heuristic approaches search for 

the near-optimal solution of the problem without being able 

to guarantee either optimality or feasibility. The main 

algorithm characteristic of heuristic based direct search 

techniques for the specific problem is that a heuristic is a 

technique designed for solving a problem more quickly 

when classical methods are too slow. The prefix “meta” in 

Greek means beyond, denoting a higher level or upper-level 

methodology. Metaheuristic approaches are the strategic key 

that can modify and update the algorithm for the searching 

solution. Sir Glover introduced metaheuristic in a research 

paper. Local search is basically an iterative-based method to 

search for a neighbor of a solution and hence trying to 
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enhance the best current solution by local movement [2]. 

Each metaheuristic process depends on balancing between 

two essential components including diversification and 

intensification. The diversification phase ensures that the 

algorithm explores the search space more efficiently and 

helps to generate solutions. However, when diversification 

is too much it will increase the probability of finding the 

optimal globally solutions. However, this process will often 

be too slow with low rate convergence of the problem as 

seen in the initial population process in the Genetic 

Algorithm. The key to this process is to avoid a solution 

being the trap or becoming stuck in the local optimum. The 

intensification process is the signal information in the search 

process to generate better solutions. However, if there is too 

much intensification this will induce convergence rapidly 

usually to local optimum and will reduce the probability to 

survey the global optimum solutions. Meanwhile, if there is 

too little intensification it will take a long computational 

time to find the global optimum solutions as seen in the 

update pheromone process in the Ant Colony Optimization. 

The importance of the intensification process is to control 

the amount of signal information to the appropriate level [3]. 

Nowadays, metaheuristic approaches can be classified into 

nine different groups as Physics-based, Social-based, 

Biology-based, Chemical-based, Music-based, Swarm-based, 

Mathematics-based, Sport-based and hybrid [4]. Examples 

of algorithm that were inspired by physics are the Elevator 

Kinematics Optimization algorithm [5], Gravitation Search 

algorithm [6], Electromagnetism-like algorithm [7], Central 

Force optimization [8], Intelligent Water Drops algorithm 

[9], Big Bang-Big Crunch algorithm [10], and Galaxy-Based 

algorithm [11]. The Imperialist Competitive algorithm [12] 

and Teaching Leaning based optimization [13] are social-

based. The Genetic algorithm [14], Artificial Immune 

Systems [15], and Biogeography-Based optimization [16] 

are biology based. The Artificial Chemical Reaction 

optimization algorithm [17] is chemical-based.  The 

Harmony search algorithm [18] is music based. The Ant 

Colony optimization [19], Particle Swarm optimization [20], 

Cat Swarm optimization [21], Monarch Butterfly 

optimization [22] and Cuckoo Search [23] are all biology 

based. Both Matheuristic [24] and Base Optimization 

algorithms [25] are mathematics- based. Some metaheuristic 

algorithms can be classified as both biology based and 

social-based such as the Cultural algorithm [26] and 

Colonial Competitive difference evolution [27]. Although 

the many algorithms are successful for many optimization 

problems, the design and implementation of new 

metaheuristics is an important task under the philosophy of 

improvement in a scientific field to create better technique. 

The best algorithm that gives the best results for all the 
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problems has not yet been designed, and that is why new 

artificial intelligence optimization algorithms are constantly 

proposed. Optimization problems seek to find the best way 

from all possible solutions, such as mapping the fastest route 

from point A to point B. Many algorithms designed to solve 

optimization problems have not changed since they were 

first described in the 1970s. Previous optimization 

algorithms generally worked in a step-by-step process, with 

the number of steps proportional to the amount of data 

analyzed 

The organization of this research is as follows. In Section 

II, the carbon nanotubes and synthesis are described. In 

Section III, the novel metaheuristic approach is presented 

with its computational operators inspired by the synthesis of 

carbon nanotubes (Artificial Carbon Nanotubes Synthesis 

Optimization: ACNSO). The blood vehicle routing problem 

is presented in Section IV. The application of this algorithm 

for the blood vehicle routing problem is presented in Section 

V. The parameters and experimental results are in Section 

VI. Finally, Section VII concludes this research. 

 

II. THE SYNTHESIS OF CARBON NANOTUBES 

Norio Taniguchi coined the word nanotechnology in 1974, 

in Japan. The meaning of nanotechnology is the design, 

characterization, production, and application of materials, 

devices, and systems by controlling shape and size at the 

nanoscale. The nanoscale consensually refers to the range of 

1–100 nm. Nanotechnology is a vast field, which explores 

many facts about the structures and properties of materials 

[28]. There are many applications at the nanoscale such as 

carbon nanotubes, nanoparticles, and Buckminster fullerene. 

Carbon nanotubes (CNTs) are graphene sheets rolled to 

form tubes with a diameter of 3-30 nm. They were 

discovered by Iijima in 1991 [29]. Carbon nanotubes are 

classified into two basic structure types: single-walled 

carbon nanotubes (SWCNT) and multiple-walled carbon 

nanotubes (MWCNT). The difference between two tubes is 

that SWCNTs are a single layer of graphene, easy to 

characterize and evaluate, while MWCNTs consist of many 

single-walled tubes stacked one inside the other and have a 

very complex structure. Normally, SWCNTs are narrower 

than MWCNTs with diameters in the range of 1-2 nm. 
There are three roll types of graphene including armchair 

carbon nanotubes, zigzag carbon nanotubes, and chiral 

carbon nanotubes. The atomic structures of the carbon 

nanotubes are described by the tube chirality defined by the 

chiral vector, Ch, and the chiral angle θ in Fig. 1. 
 

 
Fig. 1.  Unit vector a1, a2 and angle. 

A graphene sheet is formed with defined chiral vector and 

angle. The chiral vector is described in terms of the lattice 

translational indices (n, m) and the unit vectors a1 and a2 as 

shown in Ch=na1+ma2. The chiral angle (θ), determines the 

degree of twisting of the tube, and is defined as the angle (θ) 

between the vectors Ch and a1, which varies in the 0o ≤ |θ| ≤ 

30o range. The differences in carbon nanotubes types are 

generated depending on how the graphene sheet is rolled up 

during the creation process. Fig. 2 shows the three different 

roll up type of SWCNTs. Based on the geometry of the 

carbon bonds around the circumference of the tube, there are 

two limiting cases, corresponding to the chiral tubes, known 

as armchair (θ = 30o) and zig-zag (θ = 0o). In addition, when 

0o < |θ| < 30o, the nanotube is called chiral. 

 

 
Fig. 2. Carbon nanotube types: armchair, zigzag, and chiral. 

 

Several techniques have been used to synthesize the 

carbon nanotubes. There are three techniques most 

commonly employ: arc discharge, laser ablation, and 

chemical vapor deposition. However, carbon nanotubes can 

also be generated in nature. The basic elements for the 

formation are catalyst, a source of carbon, and sufficient 

energy. 

A. Arc Discharge 

In 1991, carbon nanotubes were produced using an arc-

discharge evaporation method similar to that used for 

fullerene synthesis in the past. Carbon needles with 

diameters ranging from 4 to 30 nm. And lengths up to 1 mm 

were used. The arc-discharge assembly includes two vertical 

thin electrodes (anode, cathode) installed in the center of the 

chamber. The lower electrode (cathode) has a shallow dip to 

hold a small piece of iron during the evaporation phase. The 

arc-discharge can be generated by running a DC current of 

200 A at 20 V between the two electrodes. After the arc 

discharge process the carbon nanotubes are found at the 

cathode. The yield for this method is up to 30% by weight 

and it produces both SWCNTs and MWCNTs [30]. 

B. Laser Ablation 

In 1995 Richard E. Smalley and his group used laser 

ablation for the first time to grow high quality nanotubes. 

Intense laser pulses ablate a carbon target, which is placed in 

a tube-furnace heated to 1200°C. During the process, some 

inert gas like helium or argon flows through the chamber to 

carry the grown nanotubes to the copper collector. After the 

cooling of the chamber the nanotubes and the by-products 

can be collected, including the fullerenes and amorphous 
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carbon over-coating on the sidewalls of nanotubes [31]. 

C. Chemical Vapor Deposition 

The most popular and simplest way to grow carbon 

nanotubes in the laboratory is to use chemical vapor 

deposition (CVD). A CVD system for CNT growth injects a 

vaporized hydrocarbon compound (methane or ethane are 

common) into a high temperature zone in a furnace. The hot 

zone contains a substrate on which has been pre-deposited a 

thin film of iron, nickel or cobalt that has either separated or 

been pre-patterned into nanoscale islands of the metal. 

These nanoscale islands catalyze the growth of the carbon 

nanotubes. The catalyst is the key to the whole process and 

careful attention must be given to its deposition. Both single 

and multi-walled CNTs can be produced via CVD [32]. 

D. Natural 

Carbon nanotubes which do not use the high-tech 

laboratories are commonly formed in such mundane places 

as ordinary flames produced by burning methane, ethylene, 

and benzene. They have been found in soot from both 

indoor and outdoor air. However, these naturally occurring 

varieties can be highly irregular in size and quality because 

the environment in which they are produced is often highly 

uncontrolled [33]. 

 

III. ARTIFICIAL CARBON NANOTUBES SYTHESIS 

OPTIMIZATION (ACNSO) 

The carbon source is an important raw material for the 

synthesis of carbon nanotubes. Several techniques have been 

used in the synthesis of carbon nanotubes where 

hydrocarbons such as methane and acetylene are commonly 

used as precursors. However, there are many carbon sources 

for the production of carbon nanotubes such as coal, 

graphite and other hydrocarbon. Algorithm can be 

considered as a simulation of carbon nanotubes in synthesis 

and can be modified or adapted to suit specific problem 

requirement. Encoding of carbon sources can be binary, real 

string, etc. In this case they are asymmetric string. These 

encoding schemes play a role in the carbon atoms of carbon 

sources (Fig. 3). ACNSO begins with a set of initial carbon 

sources in a solution. 

 

 
Fig. 3. The flowchart of the ACNSO algorithm. 

 

A. Problem and Algorithm Parameters Initialization 

This section provides details about input the data of the 

problem into the application. The proposed algorithm 

defines four parameters and one constant parameter for 

evaluation including the number of Carbon Sources (CS), 

number of Repetitions (R), Percentage of Carbon Nanotubes 

type (PCN) and Proportion of Roll up type (PR). Initially, 

CS and R are set to one parameter and determine the 

appropriate proportion of the solution. The Proportion of 

Synthesis Carbon Nanotubes types defines arc discharge, 

laser ablation, chemical vapor deposition and natural in the 

ratio of 30:30:30:10 respectively (set to a constant). PR 

shows the probability of carbon nanotubes as follows: 

Armchair carbon nanotubes, Zigzag carbon nanotubes and 

Chiral carbon nanotubes. PCN is the proportion of single 

wall and multi-wall carbon nanotubes. 

 
Fig. 4. The string size of carbon nanotubes. 

 

B. Setting the Initial Carbon Sources     

Carbon source refers to any carbon atom carbon 

containing molecules and uses to the synthesis of its organic 

molecules. In the proposed algorithm, the initial carbon 

sources are randomly arranged in the feasible searching 

space. However, they are not an initial solution which 

makes the difference in string size of the carbon source as 

shown in Fig. 4. The random technique is to define both the 
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number of carbon source and number of string carbons. 

Generally, the number of carbon sources is appropriate to 

the size of solution space. After the first iteration of 

processing, the structure of the strongest carbon nanotube is 

likely to be the substrate of the next solution according to 

the roulette wheel method. 

C. Synthesis of Carbon Nanotubes 

Nowadays, the carbon nanotube synthesis process has 

many approaches and complex steps. However, there are 

three main methods that also occur naturally. 

Arc discharge 

This process is to be applie across two graphite electrodes 

immersed in an inert gas. When the carbon source is used, 

carbon nanotubes are deposited on the cathode in the form 

of soot. Similarly, the carbon source fixes at the cathode and 

then the carbon molecules to form carbon nanotubes. The 

arc discharge occurs randomly initially and then connects 

with the other carbon source which can switch the 

connection point. The random method creates the solution if 

the conditions are not initially met (Fig. 5). 

 
Fig. 5. Carbon nanotubes of arc discharge synthesis. 

 

 
Fig. 6. Carbon nanotubes of laser ablation synthesis. 

 

 
Fig. 7. Carbon nanotubes of chemical vapor deposition synthesis. 

 

Laser ablation 

The laser ablation process is to destroy the carbon source 

in the laser oven with high temperatures. Afterwards, the 

carbon molecule takes the bonded carbon nanotubes form. 

The carbon molecule remains in the carbon form with at 

least 2 atoms which are sent into the carbon source pool. 

The random technique in the carbon source pool is to 

generate carbon nanotube (Fig. 6). 

Chemical Vapor Deposition  

The CVD technique involves the composition of the 

molecule of the carbon source, catalyzed by the metallic 

particle which also serves for the initiation of carbon 

nanotube growth. The catalysts break down carbon atoms 

like the carbon atoms of the carbon molecule whereby 

carbon molecules formed carbon nanotube structure (Fig. 7). 

Natural 

Naturally, occurring carbon nanotubes have existed for a 

long time, but the microscope technology had not yet seen 

this phenomenon. Consequently, this process provides a 

random technique without a carbon source pool. However, 

many dual carbon atoms are created and are composed of 

carbon nanotubes. 

D. Selection Roll up Types 

Carbon nanotube structures form in armchair, zigzag and 

chiral configurations. They differ in chiral angle and 

diameter: armchair carbon nanotubes share electrical 

properties similar to metals. The zigzag and chiral carbon 

nanotubes possess electrical properties similar to 

semiconductors. The difference is only at the nano scale 

along three different directions as shown in Fig. 8.   
 

 
Fig. 8. The carbon atoms arrangement is the direction of alignment on 

Armchair, Zigzag, and Chiral. The bold line is to present the bonding of 

carbon atoms. 

 

The armchair roll-up has a uniform arrangement of the 

carbon atoms as 180-120-180-120 degrees. The zigzag 

carbon nanotube has a pattern of angles as 120-240-120-240 

degrees. Uncertain angles of arrangement of carbon atoms 

are a form of chiral carbon nanotube. Similarly, armchair 

roll-up defines the upper - lower bound random value as 

even number. The upper lower random technique applies 

with all positions in the zigzag roll-up. The chiral roll-up 

uses upper-lower bound random with ignorance alternately. 

In this work, the proposed algorithm sets +3 and –3 for the 

upper and lower values respectively. Fig. 9 shows the 

armchair, zigzag and chiral random methods in this process. 

E. Selection of Carbon Nanotube Types 

The difference between the single wall and multi-wall 

carbon nanotubes is the single graphene cylinder whereas a 

multi-walled carbon nanotube comprises several concentric 

graphene cylinders, depending on the rolling of the 

graphene sheets, for armchair, zig-zag and chiral type. In 

this work, both Multi-wall and single wall carbon nanotubes 

are the solution of the synthesis process. However, multi-

wall carbon nanotubes create two layers of wall called 

double-wall carbon nanotubes to the form difference in 

diameter by one position as shown in Fig. 10. Double-wall 

carbon nanotubes expand by the addition of 1 to each 

position. If the number is a duplication of a previous value 
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that creates a new position randomly. As a result, double-

wall carbon nanotubes can create a new solution from the 

expansion of the tube. 

F. Comparing, Storing and Selecting Global 

Optimization 

After the synthesis procedure of carbon nanotubes, 

selection of roll up types and selection of carbon nanotube 

types, there are many solutions from these processes. This is 

due to each procedure being capable of producing the 

solution and not always having to finalize another. The 

comparison is to take the solution of each process and 

choose the best solution and collect the solution as the 

carbon source for the next iteration. The selection of global 

optimization is to choose the best so far from past to present 

iterations. However, this must be compared with the best of 

the current iterations to select the new best so far. 

G. Cracking the Best Nanotubes (Solution) in Each 

Method 

The optimal solution in each process must respect the 

good results from the current iteration.  Causes for these 

solutions are precursors for the next iteration. The cracking 

is to destroy carbon nanotubes (solution) back to the 

original as the carbon sources.  The random approach to 

crack the carbon nanotubes into at least 2-5 carbon atoms is 

to return to carbon sources to generate new carbon 

nanotubes. This algorithm is to be repeated until complete 

determination. 

 

 
Fig. 9. Armchair, Zigzag and Chiral strategy for generating a new solution. 

 

 
Fig. 10. Single and double wall carbon nanotubes strategy for creating a 

new solution. 

 

IV. BLOOD VEHICLE ROUTING PROBLEM 

The importance of blood vehicle routing networks has 

been widely recognized. Effective management of blood 

vehicle routing can reduce distance and improve 

responsiveness to changing hospital demand. Vehicle 

routing may be defined as the art of bringing the right 

product in the right quantity to the right place at the right 

time while minimizing distance. The Vehicle Routing 

Problem (VRP) is a Nondeterministic Polynomial time 

problem (NP-hard problem) [34]. VRP has been previously 

tackled using various methods. Efficient, exact algorithms 

are only for small size problems. Based on the full 

enumerative search within this algorithm, the optimal 

solutions are always guaranteed. However, the approach 

might need exponential computational time [35]. This 

research focuses on the Chiang Mai blood donation center 

to support the hospitals in the north of Thailand. It is 

responsible for donating and delivering blood to hospitals in 

Chiang Mai, Chiang Rai, Phrae, Nan, Lam pang, Lamphun, 

Phayao and Mae Hong Son. The number of hospitals that 

receive blood is 112 hospitals [36]. Google Maps is used to 

calculate the distance of each hospital for data processing. 

The mathematical model and its notations for blood vehicle 

routing considered in this paper involve the following 

equations. 

Indices: 

Z: denotes total distances for blood vehicle routing 

i: denotes hospital i 

j: denotes hospital j 

k: denotes blood vehicles k 

Parameters: 

dij: is distance from hospital i to hospital j  

N: is number of hospitals 

K: is number of blood vehicles 

 p: is hospital (1, 2, 3, …..N) 

A: is blood group A 

B: is blood group B 

AB: is blood group AB 

O: is blood group O 

ak: is capacity of blood vehicles k 
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A

iq : is blood group A demand of hospital i 

  

B

iq : is blood group B demand of hospital i 

  

AB

iq : is blood group AB demand of hospital i 

  

O

iq : is blood group O demand of hospital i 

Decision variables: 
k

ijX  = 1 if vehicles k from i to j, otherwise 0  

k

iY  = 1 if blood load in vehicles k, otherwise 0 

k

iU  is the variable for protection if it is not possible to  

supply all hospitals        

Objective function 

                      1 0 0

 
K N N

k

ij ij

k j i

Min Z d X
  

                  (1) 

Representation by 

 

 

  

  

 

 

   

 

                  (12) 

                            (13) 

k

ijX  = {0,1}      1 . , 1 . , 1 .i N j N k K            (14) 

k

iY = {0,1}    1 . , 1 .i N k K                     (15) 

  
k

iU     1 . , 1 .i N k K               (16) 

Equation 1 is the sum of the distance from the blood 

donation center to all hospitals. Constraint 2 represents the 

blood delivery vehicles transportation from the blood 

donation center only. Constraint 3 ensures that the blood is 

delivered to only the hospitals requiring it. Likewise, 

Constraint 4 is for only the blood vehicles delivering to the 

hospitals. Constraints 5 to 8 ensure that blood groups A, B, 

AB and O are less than or equal to the capacity limitation of 

the blood vehicles. Constraint 9 ensures that blood vehicle i 

takes a route through hospital j. Constraint 10 ensures that 

the hospital j has been transported at least 1 time. 

Constraints 11 to 13 prevent detours and guarantee the 

supporting of all hospitals requiring blood. Constraints 14 

and 15 are decision variables 0 or 1. If it is 0, the value of 

the equation is 0. If the variable is 1, the value of equation is 

the original value, while the Remaining constraint defines to 

be greater than or equal to 0. 
 

 Fig. 11. Pseudo code of ACNSO for blood vehicle routing network problem. 

 
 

V.
 

ACNSO FOR BLOOD VEHICLE ROUTING PROBLEMS
 

At the beginning, the initial process is the setting 

parameters for both the ACNSO algorithm and the blood 

vehicle routing network problem. The second step is
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defining the parameters as CS, R and random carbon source 

size. After that, the process generates the integers (hospitals) 

into the carbon source string by a random technique. The 

third step is the selection of four of the synthesized carbon 

nanotube types in proportion.  The fourth step is the random 

roll up types including armchair, zigzag and chiral carbon 

nanotubes. Both single and multiple wall carbon nanotubes 

are randomly selected in the fifth step. Henceforward, the 

application evaluates the objective function from Equation 1 

(minimizing distance). The sixth step is sorting by the 

objective function that selects the best global solution 

(strong structure) in data storage and destroys the weak 

structures of carbon nanotubes.  

The final step is cracking the carbon nanotubes from the 

remaining solution. The ACNSO is terminated when the 

termination criterion has been met. The application reports 

the best solution. Otherwise, the algorithm is repeated. The 

detail and figures are shown in the artificial carbon 

nanotube synthesis optimization topic. According to the 

ACNSO algorithm concept, the pseudo-code of the ACNSO 

for solving the blood vehicles routing network problem is 

represented in Fig. 11. 

 

VI. EXPERIMENT AND RESULTS 

Nowadays, there are several factors impacting the 

algorithm. The research objective is to find factors that have 

an influence in order to find the objective function for the 

application. This paper has to use statistics of experimental 

theory to design the experiment in terms of full factorial 

design 3 level. This method is used when there are k factors 

to consider. Each of the factors consists of 3 levels 

including high, intermediate and low. Each experiment is 

composed of 3k data which is called 3k factorial design. In 

this present work, ACNSO was used to design the blood 

vehicle routing network. Three sizes of benchmarking are 

shown in the next sentence. The small size problem 

involves 26 hospitals (only Chiang Mai Province). The 

medium size problem supports 38 hospitals (Chiang Mai, 

Lamphun, Mae Hong Son) and 112 hospitals are contained 

in the large size problem [36], [37]. A two-step sequential 

experiment was adopted in this research [38]. The 

experiment was designed to investigate the appropriate 

setting for ACNSO parameters including the number of 

Carbon Sources (CS), number of Repetitions (R), 

Percentage of Carbon Nanotubes types (PCN) and 

Proportion of Roll up type (PR)[39]. Since each parameter 

was considered at three levels (see Table I), full factorial 

design (3k) was adopted in this experiment. It should be 

noted that the combination of number of repetitions and 

number of Carbon Sources (R/CS) determine the number of 

candidate solution generated, which are directly implied the 

amount of searching in the solutions space. The higher 

values of these parameters mean that there is more chance 

of getting good solutions but this requires longer 

computational time. The combination of these factors was 

fixed to 10,000 candidate solutions in order to fairly 

compare the obtained results with other algorithms. 

The experiment was repeated five times using different 

random seed numbers, which could be potential nuisance 

factors. The computational results obtained from 135 runs 

(33x5) shown in Table II to Table IV were analyzed using a 

general linear form of analysis of variance (ANOVA) 

including Source of Variation, Degree of Freedom (DF), 

Sum of Squares (SS), Mean Square (MS), F values and P 

values. A factor with p <= 0.05 is statically significant with 

a 95% confidence level. The analysis of the residual plot 

considers the normal probability and the histogram plot.  

The normal distribution Versus fits and Versus order graphs 

show that the data are normally distributed and independent 

as shown in Fig. 12–Fig. 14.  

TABLE I: EXPERIMENTAL FACTORS AND IT LEVEL 

 

Factors 

Levels 

Low Medium High 

R/CS 50/200 100/100 200/50 

PCN 20/40/40 (%) 40/20/40 (%) 40/40/20 (%) 

PR 25/75 (%) 50/50 (%) 75/25 (%) 

 

 
Fig. 11. The analysis of the Residual plot of the small size problem. 

 

 
Fig. 12. The analysis of the Residual plot of the medium size problem. 

 

 
Fig. 13. The analysis of the residual plot of the large size problem. 

TABLE II: ANOVA ON EXPERIMENT RESULTS OBTAINED FROM  ACNSO 

USING SMALL PROBLEM 

Source DF SS MS F P 

 R/CS 2 1.1 0.56 0.01 0.991 

 PCN 2 4780.8 2390.42 39.28 0.000 

               PR 2 71.6 35.49 0.58 0.56 

R/CS * PCN 4 32.6 8.14 0.13 0.970 

R/CS * PR 4 385.6 96.41 1.58 0.184 

PCN * PR 4 99.9 24.98 0.41 0.801 

R/CS * PCN *PR 8 337.5 42.18 0.69 0.697 

Error 108 6328.5    

Total 134 12375.3    

International Journal of Materials, Mechanics and Manufacturing, Vol. 8, No. 3, June 2020

115



From Table II-Table IV, it can be seen that only one 

single factor called Percentage of Carbon Nanotubes (PCN) 

was statically significant on all problem sizes. The Zigzag 

and Chiral solutions can create a variety of solutions from 

switching string positions. The remaining factors including 

the number of repetitions and number of carbon sources 

(R/CS) and proportion of roll up types (PR) in the range 

considered were not significant with a 95% confidence level.  

TABLE III: ANOVA ON EXPERIMENT RESULTS OBTAINED FROM ACNSO 

USING MEDIUM PROBLEM

Source DF SS MS F P 

 R/CS 2 725 362.50 2.73 0.07 

 PCN 2 5912.6 2956.3 22.23 0.000 

               PR 2 498.3 249.16 1.87 0.159 

R/CS * PCN 4 236.8 59.21 0.45 0.776 

R/CS * PR 4 57.8 14.44 0.11 0.979 

PCN * PR 4 695.0 173.74 1.31 0.273 

R/CS * PCN *PR 8 1537.7 192.22 1.45 0.187 

Error 108 13831.6 133.0   

Total 134 26103.2    

 

TABLE IV: ANOVA ON EXPERIMENT RESULTS OBTAINED FROM ACNSO 

USING LARGE PROBLEM 

Source DF SS MS F P 

 R/CS 2 347.5 173.8 17.87 0.501 

 PCN 2 26230.7 13115 52.55 0.000 

               PR 2 173.6 86.8 0.35 0.707 

R/CS * PCN 4 1371.4 342.8 1.37 0.248 

R/CS * PR 4 1330.3 332.6 1.33 0.263 

PCN * PR 4 1034.8 258.7 1.04 0.392 

R/CS * PCN *PR 8 1862.4 232.8 0.93 0.493 

Error 108 25955.6 249.6   

Total 134 59108    

 

The main effect plots represented in Fig. 14-Fig. 16 

indicate that the appropriate setting of ACNSO parameters 

should be 20/40/40 (%) for Percentage of Carbon 

Nanotubes type (PCN). This is the technique of the solution 

of both zigzag and chiral can find new solutions better than 

for the armchair. The remaining parameters can be adjusted 

as appropriate. However, this algorithm was designed to 

compare the experimental results obtained from Genetic 

Algorithm (GA), Cuckoo Search (CS), Artificial Chemical 

Reaction Optimization Algorithm (ACROA) and Hybrid 

Cuckoo Search (HCS) reported by Sujaree. K and 

Jirawongnusorn S. [37]. 

 

 
Fig. 14. Main effect plot of the small size problem. 

 

The summary of the objective function obtained from GA, 

CS, ACROA, HCS and ACNSO is shown in Table V. It can 

be seen that for small size problems GA, CS, ACROA, HCS 

and ACNSO were able to find the minimized distances. For 

medium size problems, the CS, ACROA, HCS and ACNSO 

algorithms produced minimized distances lower than the 

GA. Whereas for large size problems, the best-so-far results 

obtained from ACNSO and HCS were better than GA, CS 

and ACROA respectively [37]. However, the computational 

times of ACNSO are shorter than HCS. 

 

 
Fig. 15. Main effect plot of the medium size problem. 

 
Fig. 16. Main effect plot of the large size problem. 

 
TABLE V: THE SUMMRY OF RESULTS OBTAINED FROM GA, CS, ACROA, 

HCS AND ACNSO 

 

Problem size 

 Best-so-far solution 

GA CS ACROA HCS ACNSO 

Small size  

(26 hospitals) 

Computational 

times 

389 

 km. 

389 

 km. 

389 

 km. 

389 

km. 

389 

km. 

18.4 

Sec. 

19.2 

Sec. 

23.3 

Sec. 

26.1 

Sec. 

24.6 

Sec. 

Medium size  

(38 hospitals)  

Computational 

times 

735  

km. 

697 

km.  

697 

 km. 

697 

km. 

697 

km. 

41.7 

Sec. 

43.5 

Sec. 

49.2 

Sec. 

55.6 

Sec. 

50.4 

Sec. 

Large size  

(112 hospitals) 

Computational 

times 

1968 

km.  

1836 

km. 

1832  

km. 

1818 

km. 

1818 

km. 

191.5 

Sec. 

213.6 

Sec. 

231.7 

Sec. 

264.3 

Sec. 

234.8 

Sec. 

 
Fig. 17. The convergence to optimal solution in large size problem. 
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Fig. 17 shows only plots of a large size problem due to 

similarity in all problem sizes. One experiment was 

assigned per algorithm with brake criteria of 50 replications. 

In the experiment, ACNSO and HCS have the ability to 

quickly find the objective function towards the minimizing 

of distance with faster solution convergence compared to 

ACROA, CS, and GA. This implies that ACNSO and HCS 

have a strong capability in terms of speed of objective 

function convergence for each problem size. However, 

ACNSO takes less time to process a solution than the HCS 

algorithm. 

 

VII. CONCLUSION 

This algorithm was inspired by the synthesis of carbon 

nanotube method called Artificial Carbon Nanotube 

Synthesis Optimization (ACNSO). The ACNSO has many 

techniques to generate solutions consisting of four synthesis 

types (Arc discharge, Laser ablation, Chemical vapor 

deposition and Natural). These types include the roll form 

of carbon nanotube (Armchair, Zigzag, Chiral) and the 

layers of walls of carbon nanotubes (single and double wall). 

The advantage of this algorithm is the creation of carbon 

sources, not both the initial solution and the single node, 

which makes it possible to find solutions not in local search 

and to create an optimal solution quickly. The proposed 

approach solved the blood vehicle routing network problem 

and was tested on three sizes of benchmarking datasets. The 

two-step sequential computational experiment was adopted 

in this paper. Since the performance of an algorithm 

depends on its parameter settings, the experiment was based 

on full factorial design aiming to investigate the appropriate 

setting of ACNSO parameters, which was then used in the 

second experiment intending to compare the performance of 

the proposed method with other algorithms including GA, 

CS, ACROA and HCS. It was also found that ACNSO 

calculated the objective function with a lower distance than 

those obtained from other methods especially for the large 

size problem. However, the HCS algorithm could find the 

same solutions but required less computational time. 

However, this algorithm can be used to solve other vehicle 

routing problems or can be developed into a hybrid 

algorithm to increase the efficiency of finding solutions.  
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