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Abstract—This paper describes the opportunistic 

maintenance model for availability analysis of two component 

series system using the Markov and the Monte Carlo Simulation 

methods. The system model is developed incorporating four 

states for each component considering their level of degradation. 

Separate models are developed for three cases of corrective 

repair such perfect, imperfect, and minimal repair with and 

without condition based opportunistic maintenance. These 

models are solved using analytical Markov approach. The 

solutions are validated by the Monte Carlo Simulation. Since the 

Markov approach is limited to exponential failure and repair 

rates, the Monte Carlo Simulation based codes can be further 

extended to accommodate systems which follow non-exponential 

failure and repair rates. 

 
Index Terms—Availability, markov, monte carlo simulation, 

opportunistic maintenance.  

 

I. INTRODUCTION 

Maintenance has been defined as a combination of 

technical and associated administrative actions intended to 

retain an item or system in, or restore it to, a state in which it 

can perform its required function [1]. The nascence of modern 

high technology components has resulted in an increase in 

complexity and cost of industrial components and systems. 

This makes it important to maximize the utilization of these 

components and systems throughout its lifetime. In recent 

times, the total maintenance cost is largely becoming a 

substantial portion of the total operating cost of the system or 

component. Thus the development of a judicious and 

effective maintenance policy is a major concern for industrial 

and manufacturing engineers.  

Conventional maintenance policies encompass simple 

corrective and preventive maintenance for components. 

Corrective maintenance is effectively illustrated by the 

philosophy “if it isn’t broken, don’t fix it” [2]. Preventive 

maintenance, on the other hand, consists of certain scheduled 

activities that are performed while the system is still 

functioning. The underlying aim behind preventive 

maintenance is to reduce the number of unplanned system 

downtime due to system or component failure.  

In the current industrial scenario of increased demand and 

surfeit global competition, such primitive maintenance 

policies will not suffice and provide an advantageous edge 

over competitors. From the maintenance point of view, this 

advantageous edge can be facilitated by increasing system or 
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component availability which means reducing downtime 

without compromising on the system reliability. This has 

resulted in the adoption of much more efficient maintenance 

policies such as condition based maintenance and 

opportunistic maintenance. Opportunistic maintenance can be 

visualized as a fruitful combination of corrective and 

preventive maintenance. Opportunistic maintenance makes 

maximum utilization of the time to perform corrective 

maintenance on a component or system by using this time to 

carry out preventive maintenance on components which may 

require maintenance in the near future. Opportunistic 

maintenance is not a maintenance policy for a single 

component, but for a collection of components in a 

production line or plant [3].  

The work in the field of opportunistic maintenance first 

began by [4]. The authors implemented the opportunistic 

policy for unmonitored components/systems. Reference [5] 

shows how this policy was investigated for two components in 

series, but no mathematical treatment for availability measure 

was proposed. An imperfect maintenance concept in this 

context was applied by [6]. Since then, many extensions of 

opportunistic maintenance have been introduced and studied 

in the literature. The Markov and Semi-Markov approaches 

have been used in literature to analyze various maintenance 

policies. Reference [7] shows how a Markov renewal process 

was used to construct a maintenance cost model for a simple 

multi-unit system. A continuous time Markov chain was used 

by [8] to describe the degradation of a component. A cost 

model was developed including the presence of resource 

constraints. Dynamic programming was used by [9] to 

analyze a condition based and opportunistic model for a two 

unit deteriorating system involving a cost model. The 

transient behavior of a multi-unit system was studied by [10] 

using renewal theory. The instantaneous availability for a 

fixed time was calculated and a methodology was developed 

to find times to preventive and opportunistic maintenance 

such that cost is minimized. His components had binary levels 

of degradation, i.e. operating or failed.  

In the existing literature, the Markov model has been used 

to analyze systems undergoing various corrective and 

preventive repairs. The application of Markov for systems 

undergoing opportunistic maintenance has not been explored 

so far. Also, the existing literature doesn’t take into account 

multi-state degradation of components and considers 

components with binary states. The existing literature has 

resorted to a cost model to analyze and compare various 

maintenance policies without giving much significance in 

quantifying the gains of opportunistic maintenance. 

This paper overcomes these limitations by firstly 

developing a system model considering multi-state 
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degradation and providing an analytical method based on 

Markov to analyze the availability. Opportunistic 

maintenance policies for different types of corrective repairs 

such as perfect, imperfect, and minimal repairs have been 

considered. Acknowledging the limitation of the Markov 

method to be useful for components having exponential 

failure and repair rates, a Monte Carlo Simulation method is 

also presented which has been correctly validated by the 

Markov model to extend this availability analysis to systems 

having non-exponential failure and repair distributions. The 

gains of an opportunistic maintenance policy has been 

quantified in terms of availability of system and this provides 

us with a suitable decision making tool to choose the best 

maintenance policy and also compare different combinations 

of components in terms of availability for a particular 

maintenance policy.  

Software such as RAPTOR (ARNIC, Annapolis, MD), 

BlockSim (Reliasoft, Tucson, AZ), et al., are widely used for 

availability analysis of repairable systems. These software 

programs do not yet have a module for opportunistic 

maintenance. The proposed methodology can be used as an 

extension for these software programs.  

The remaining paper is organized as follows. Section II will 

enumerate the approaches used. Section III will describe the 

system modeling to incorporate multi-level degradation and 

corrective repair i.e. perfect, imperfect, and minimal, with and 

without opportunistic maintenance. The solutions of the 

models based on Markov and Monte Carlo Simulation will be 

described in Section IV. Section V will use an example to 

illustrate the methodology, and discuss the results. Finally, 

Section VI concludes the work. 

 

II. APPROACHES 

A. Overview of Markov Method 

Markov models are frequently used in reliability and 

maintainability work where events, such as the failure or 

repair of the module, can occur at any point in time. The 

Markov method evaluates the probability of jumping from 

one known state into the next logical state. This continues 

until the system being considered has reached the final or 

totally failed state or until a particular mission time is 

achieved. The basic assumption of a Markov Process is that 

the behavior of the system in each state is memory less [11]. 

For any given system, a Markov model consists of a list of the 

possible states of that system, the possible transition paths 

between those states, and the rate parameters of those 

transitions. Let the symbol λ denotes the rate parameter of the 

transition from State 1 to State 2 and be yi(t) the probability of 

the system being in State i at time t. Fig. 1 shows the Markov 

model for a simple component with binary states. 

 
Fig. 1. Markov model for a simple component. 

 

The set of differential equations for this simple model are 

given by (1), (2) and (3). 

0
o

  dy
λy

dt
                       (1) 

1
1

dy
λy

dt
                 (2) 

  0 1 1y y               (3) 

B. Overview of Monte Carlo Simulation 

The Monte Carlo Simulation is a powerful and versatile 

tool based on random sampling which has a wide range of 

applications in various fields. One underlying principle of 

Monte Carlo Simulation is the law of large numbers, which 

states that the larger the sample, the more likely the sample 

mean will be a good estimate of the population mean [12]. 

The Monte Carlo Simulation can be used to model the 

availability of systems. It makes use of the failure and repair 

statistical distributions of components or systems to analyze 

the system behavior over time [13].  

Initially, the simulation time to failure and repair time of 

the component or system are generated. Random numbers are 

created using an uniform distribution (U) in the interval (0, 1), 

and a suitable conversion method is used to convert these 

random numbers into the times for failure and repair. The 

frequently used conversion methods include the inverse 

transform method, composition method and 

acceptance–rejection method. We shall use the inverse 

transform method in this article due to its simplicity. However, 

its use is limited to when the repair and failure distributions 

can be inverted analytically. For an exponential distribution, 

with parameter λ, the expression for the random variable T 

which can be the time to failure or time to repair using an 

inverse transform method is given by (4).  

1
=- ln(1 )T U


                 (4) 

Also, since the (1-U) is distributed in the same way as U, T 

can be given by (5). 

1
=- lnT U


            (5) 

Similarly, for a Weibull distribution with parameters ‘θ’ 

and ‘β’ the expression is (6). 

 
1

lnT U


              (6) 

After the generation of the failure and repair times of all 

components or systems according to the appropriate 

distribution, the sequence of failures and repairs for the 

system are simulated for a specific mission time. This process 

is repeated for a large number of simulations. The system 

availability for a given mission time is calculated as the ratio 

of the total up time of the system for the total number of 

simulations to the total of mission time of all of the 

simulations. 
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III. SYSTEM MODELING 

The system studied in this research is a two component 

series multi-unit system shown in Fig. 2. The term “unit” 

could be a component, a set of components, or even a 

subsystem which can be part of a greater robust or intricate 

industrial system. 

 

 
Fig. 2. System model.  

A. Modeling Multi-Level Degradation  

Practically any component/unit which is part of an 

industrial system undergoes multiple levels of degradation 

before reaching the failed state. Multi-level degradation, 

therefore, implies that the component will not have a constant 

failure rate up to the failed state, but the failure rate will vary 

as the component reaches the failed state. Each component is 

assumed to have four levels of degradation with are given by, 

State 1(Initial State / Good as new), State 2 (Middle State), 

State 3(Better than worst), and State 4(Failed State).  

B. Repair Action 

Since a series system is considered, once a component fails 

the system will shut down. Corrective repair must be 

performed on the failed component. The corrective 

maintenance can be of three types namely perfect, imperfect, 

or minimal repair. Perfect repair implies that the component is 

repaired from the ‘failed state’ to the ‘good as new state’ 

(State 1). Imperfect repair implies that the component is 

repaired from the failed state to the middle state (State 2). 

Imperfect repair implies a repair of lesser intensity as 

compared to perfect repair but of a quicker duration. Minimal 

repair implies that the component is repaired from the failed 

state to the better than worst state (State 3). Minimal repair is 

of least intensity and quickest duration. This downtime during 

the corrective repair process provides an opportunity to 

perform preventive maintenance on the non-failed 

component.   

C. Model Development 

The proposed model of two component series system 

incorporating multi-level degradation can be developed 

considering the above mentioned multi-level degradation and 

repair action.  

The system contains two components each having a 

possibility of being in one of the four states at a particular 

instant of time. Their series combination gives a total of 

sixteen possible states the entire system can exist throughout 

its lifetime. This is inclusive of the system state in which both 

components are in a failed state. In a series system, this state 

can occur only if both the components fail simultaneously. 

The probability of this event is considered to be negligible 

and can be neglected. The generalized assumptions made for 

the model are as follows. 

1) The opportunistic maintenance activity is assumed to be 

completed before the failed component gets repaired. 

2) The component can function perfectly in all states except 

the failed state. 

IV. SOLUTION TO THE SYSTEM MODEL 

A. Analytical Markov Approach 

Solution of the system model with the analytical Markov 

approach involves the following steps. 

Step 1: Construct a state diagram of the system representing 

all possible states of the system. The transition from one state 

to another is specified by an arrow whose direction indicates 

the direction of transition. Transition rates from one state to 

another can also be specified in the state diagram by 

overlaying it with the arrow. 

Step 2: Model the differential equation for a particular 

system corresponding to each state in the similar lines as (1), 

(2) and (3). 

Step 3: Solve the differential equations simultaneously with 

suitable initial condition and the required mission time. The 

availability of the system at the specified mission time is 

calculated by summing the probabilities of the non-failed 

system states at a particular mission time.  

B. Monte Carlo Simulation 

The Monte Carlo Simulation codes which simulate the 

functioning of the system throughout its mission time are 

developed, and availability is computed for a large number of 

trails. The Monte Carlo Simulation codes are based on the 

following algorithm. 

Step 1: Generate random numbers with uniform 

distribution corresponding to each possible transition of 

component A and B (failure and repair). 

Step 2: Convert these numbers into a value of operating 

time using the inverse transform method based on the 

exponential distribution or a non- exponential distribution 

based on the required condition. 

Step 3: At each state compare the times of the possible 

transition and proceed to the state with the minimum 

transition time while reducing this time from the transition 

time of the state not chosen. 

Step 4: When a failed state is reached, add the repair time to 

the system downtime and reset the transition times and the 

repair time for the failed component. 

Step 5: Repeat the steps 1-4 till the cumulative time of the 

sequence is equal to or more than mission time.  

Step 6: Add the downtime for this trail to the total 

downtime. 

Step 7: Repeat steps 5-6 for the required number of trails. 

Step 8: Calculate the system availability by dividing the 

total downtime upon the total mission times after all the trails. 

 

V. ILLUSTRATION 

A power system consisting of a power transformer 

(Component A) and a protection and control subsystem for 

power transformer (Component B) in series was selected for 

the case study to demonstrate the methodology for availability 

assessment. The exponential failure and repair distribution is 

assumed for each subsystem and the data for failure rate and 

repair rate is taken from the literature [14]. Table I shows the 

literature values for failure and repair rates of both the 

components.  

To incorporate multi- level degradation in the example, the 

Component 

A 

Component 

B 
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assumption is made that the failure rates of each of the 

component increases as it deteriorates. This assumption is 

based on the discussions with experts from the industry who 

are working in the field of maintenance. The failure and repair 

rates for different degrading states are obtained by dividing 

the binary state data available from the literature in 

consultation with the industry experts. Failure rates (λ) are in 

failures per hour and repair rate (μ) are in repairs per hour. 

The superscript and subscript represent the components and 

the state transition respectively. The respective calculated 

values are 12A
= 1.142 x 10

-4
, 

23A
= 1.713 x 10

-4
, 

34A
= 

3.43 x 10
-4

, 12B
= 1.712 x 

10
-4

,
34B

=5.136x10
-4

, 41A
=8.621x10

-3 
, 42A

= 17.24 x 

10
-3 

,
43A

= 34.48 x 10
-3

,
 

41B
= 6.76 x 10

-2 
, 42B

= 13.51 x 

10
-2

,
43B

= 27.03x 10
-2

. 

 
Fig. 3. Corrective Maintenance (Perfect Repair). 

 

Once the transition parameters of failure and repair have 

been defined the state diagram is drawn. The state diagram for 

perfect repair is shown in Fig. 3. Fig. 4 shows the state 

diagram for perfect repair with opportunistic maintenance. 

Due to space considerations the state diagrams for imperfect 

and minimal repair with and without opportunistic 

maintenance are not shown but can be developed along the 

similar lines. The failure rates and repair rates can also be 

expressed in terms of system state as λij or μij where “i” 

represent the state of the system before transition and “j” 

represents the state after transition. From Fig. 3 and Fig. 4 it is 

noticeable that 12A
 =  λ15  =  λ26 =  λ37. If yi represents 

the probability of the system being at the state i at the time t, 

then as specified in Section II-A, the set of differential 

equations are derived for the models shown in Fig. 3 and Fig. 

4. The set of equations for Fig. 3 are listed in Appendix I and 

for Fig. 4 in Appendix II. 

TABLE I: LITERATURE VALUES FOR THE COMPONENTS 

Component 
Temporary 

Failure Rate 

Sustained 

Failure Rate 

Average 

Failure Rate 

Mean 

Repair 

Time 

Power 

Transformers 

(33-110 kV) 

0.4 / (100 

transformers, 

year) 

0.6 / (100 

transformers, 

year) 

0.5/ (100 

transformers, 

year) 

116 

hours 

Protection 

and control 

for power 

transformers 

(33-110 kV) 

0.9 / (100 

transformers, 

year) 

0.6 / (100 

transformers, 

year) 

0.75 / (100 

transformers, 

year) 

14.8 

hours 

 
Fig. 4. Corrective maintenance (perfect repair) with opportunistic 

maintenance. 

 
TABLE II: SYSTEM AVAILABILITY 

Repair 

Action 

Availability 

without 

Opportunisti

c 

Maintenance 

using 

Markov 

Availability 

without 

Opportunisti

c 

Maintenance 

using Monte 

Carlo 

Simulation 

Availability 

with 

Opportunisti

c 

Maintenance 

using 

Markov 

Availability 

with 

Opportunisti

c 

Maintenance 

using Monte 

Carlo 

Simulation 

Perfect 

Repair 
0.99217 0.99219 0.99483 0.99483 

Imperfect 

Repair 
0.99216 0.99216 0.9964 0.9964 

Minimal 

Repair 
0.98829 0.98889 0.99615 0.99552 

 

Similarly the set of differential equations can be developed 

for the cases of imperfect and minimal repairs with and 

without opportunistic maintenance. The sets of differential 

equations for each model are solved using MATLAB (Matlab 

7.7 2008) with initial conditions as y1(0)=1, y2(0)=0, y3(0)=0, 

y4(0)=0, y5(0)=0, y6(0)=0, y7(0)=0, y8(0)=0, y9(0)=0, y10(0)=0, 

y11(0)=0, y12(0)=0, y13(0)=0, y14(0)=0, y15(0)=0 and for larger 

values mission time to get the steady state results. The system 

availability is obtained by summing the probabilities of 
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operating states. The availability results based on Markov are 

shown in Table II. 

The solution of the model is also obtained using Monte 

Carlo Simulation Methods. The codes are developed based on 

the algorithm in section IV-B. The system availability results 

based on the Monte Carlo Simulation are shown in Table II. 

The results clearly show that when the system undergoes 

opportunistic maintenance there is an increase in the system 

availability for perfect, imperfect, and minimal repair. This 

implies that for the given system an opportunistic 

maintenance policy would increase the availability 

irrespective of the maintenance action. The Markov and 

Monte Carlo Simulation give us matching values of system 

availability. Thus the Monte Carlo Simulation code has been 

validated and can be further extended to components having a 

non-exponential failure and repair rates, such as Weibull or 

Lognormal. Quantifying the gains of opportunistic 

maintenance using an availability measure helps to identify 

the maintenance policy resulting in maximum availability. 

The above results for the illustrative example clearly show 

that if the system follows an opportunistic maintenance policy 

with imperfect repair, the system availability will be 

maximized. This is valid for the current set of data but 

depending upon the failure and repair rates, the policy may 

change. This doesn’t imply that it is the optimal maintenance 

policy. The trade-offs in each case should be considered in 

terms of cost, effect on component life (as an imperfect or 

minimal repair results in more frequent system failure) and the 

opportunistic maintenance policy selected must be such that 

the economic gain due to the increase in system availability 

must compensate for the cost acquired by performing 

opportunistic maintenance. 

 

VI. CONCLUSION 

In this article an analytical Markov model is applied to find 

the system availability of a two component series system with 

opportunistic maintenance. Separate models are developed 

for different corrective actions namely perfect, imperfect, and 

minimal repairs with and without opportunistic maintenance. 

The results of system availability in all cases are validated 

using the Monte Carlo Simulation. The Monte Carlo 

simulation approach can be further extended for components 

having non-exponential distributions such as Weibull and 

lognormal distributions. This approach can be used as an 

extension for the existing software which does not have the 

opportunistic maintenance module. The suggested approach 

provides a realistic assessment of availability values of the 

repairable system due to the incorporation of multi-state 

degradation. This work can be further extended to more 

complex systems with more components in various 

configurations having more levels of degradation. A cost 

function can also be developed to analyze the economic pros 

and cons of carrying out opportunistic maintenance. There is a 

scope for development of a model for an optimal maintenance 

policy based cost and availability under the limited 

maintenance resources.   

APPENDIX I 

 1
12 15 1 41 4 131 13

 
    

dy
y y y

dt
       

 2
23 26 2 12 1 41 4

 
    

dy
y y y

dt
         

 3
34 37 3 23 2 153 15

 
    

dy
y y y

dt
         

4
34 3 41 4

 
–

dy
y y

dt
   

 5
56 59 5 15 1 85 8

 
 

dy
y y y

dt
         

 6
67 610 6 26 2 56 5

 
    

dy
y y y

dt
         

 7
711 78 7 67 6 37 3    

dy
y y y

dt
         

8
78 7 85 8–

dy
y y

dt
   

 9
910 913 9 59 5 129 12

 
    

dy
y y y

dt
         

 10
1011 1014 10 910 9 610 6

 
    

dy
y y y

dt
         

 11
1112 1115 11 711 7 1011 10

 
    

dy
y y y

dt
         

12
1112 11 129 12–

dy
y y

dt
   

13
913 9 131 13

 
–

dy
y y

dt
   

14
1014 10 142 14

 
  –
dy

y y
dt

   

15
1115 11 153 15–

dy
y y

dt
   
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 1
12 15 1 41 4 131 13

81 8 121 12 141 14 151 15

 
   

dy
y y y

dt

y y y y

   

   

    

   

 2
23 26 2 12 1

 
   

dy
y y

dt
     

 3
34 37 3 23 2

 
   

dy
y y

dt
     

 

4
34 3 41 4

 
–

dy
y y

dt
   

 5
56 59 5 15 1

 
   

dy
y y

dt
     

 6
67 610 6 26 2 56 5

 
    

dy
y y y

dt
       

 7
711 78 7 67 6 37 3    

dy
y y y

dt
       

 9
910 913 9 59 5

 
   

dy
y y

dt
     
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 10
1011 1014 10 910 9 610 6

 
    

dy
y y y

dt
       

 11
1112 1115 11 711 7 1011 10

 
    

dy
y y y

dt
       

12
1112 11 121 12

 
–

dy
y y

dt
   

13
913 9 131 13–

dy
y y

dt
   

14
1014 10 141 14

 
–

dy
y y

dt
   

15
1115 11 151 15

 
–

dy
y y

dt
   
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