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Abstract—In this paper we employ 3D hp-adaptive finite 

element method (hp-FEM) to model the behavior of a squeezed 

layered material. Under a moderate pressure, the linear 

elasticity model can be used to imitate the process. Thanks to 

hp-adaptivity, only the regions where the error rate is high are 

refined, making sure that all peculiarities are automatically 

localized. 

 
Index Terms—Finite element method, hp adaptivity, linear 

elasticity. 

 

I. HP-ADAPTIVE FINITE ELEMENT METHOD 

Finite element method (FEM) has long been an important 

tool for modeling a variety of processes including 

applications in mechanics [1], material science [2], [3], 

geology [4]-[6] and nano- engineering [7]. 

The hp-FEM is the most sophisticated version of the mesh 

adaptive algorithms [1], where elements are automatically 

h-refined (broken into smaller elements) or p-refined 

(polynomial order of approximating base is increased over 

selected elements). The decisions about finite elements that 

need to be refined are made iteratively based on the a 

posteriori error decrease estimate. 

A. Finite Element And Its Shape Functions 

In 1D, approximation base consists of basis functions 

defined with formulas (1). The example of such functions on 

element ]1,0[  is shown in Fig. 1. 

 

 
 

Fig. 1. 1D Shape functions on element [0, 1] 
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In 3D, basis functions are constructed as tensor products of 

1D basis functions.  

 

 
 

Fig. 2. 3D finite element’s nodes 

 

The basis functions are associated with nodes of a 3D finite 

element as shown in Fig. 2 on vertices we define the trilinear 

functions according to formulas (2) and as presented in Fig. 3 

(order of approximation being equal to 1 in each vertex). 
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Fig. 3. Numbering scheme for basis functions associated with vertices, as 

defined in (2) 
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Fig. 4. Numbering scheme for basis functions associated with edges, as 

defined in (3) 

 

On edges we define the functions according to formulas (3) 

and as presented in Fig. 4 (order of approximation being 

equal to )1( ip  on ith edge). 
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(3) 

 

On faces there are 6 basis functions (of approximation 

order equal to )1)(1(  ihiv pp ) as decapitated on Fig. 5. 

 

 

 
Fig. 5. Numbering scheme for basis functions associated with faces, as 

defined in (4) 
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Finally, there’s a single interior node, which has 

)1)(1)(1(  iziyix ppp  bubble functions associated with it, 

with formulas shown in (5) (see Fig. 6). 
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Fig. 6. Numbering scheme for basis functions associated with the interior, as 

defined in (5) 

B. P and H Refinements 

The quality of the solution depends on the size of the 

elements and the 
Xp  parameters referenced above 

(potentially different on each element). For a given solution, 

the quality can be improved on element K by either dividing 

it into 8 smaller elements (this is called h-refinement) or 

increasing  parameters (called p-refinement). 

C. Adaptive Algorithm 

Although we can manually adjust these parameters in 

certain regions of the domain where we require higher 

precision (by performing refinements of the mesh a priori), 

such an adjustment often turns out impractical. Instead we 

apply these refinements around the detected peculiarities of 

the computational mesh iteratively, based on a posteriori 

error estimates. The iteration is repeated until the maximum 

error reaches a designated threshold (desired_err according to 

Alg. 1). 

In this paper we are applying the method described above 

to model 3D displacements of a layered material under 

pressure. 

function adaptive_fem(initial_mesh , desired_err, coef) 

coarse_mesh = initial_mesh 
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repeat 

coarse_u = solve the problem on coarse_mesh 

fine_mesh = copy coarse_mesh 

divide each element K of fine mesh into 8 new elements (K1 .. 

K8) 

increase polynomial order of shape functions on each 

element of fine mesh by 1 

fine_u = solve the problem on fine_mesh 

max_err = 0 

for each element K of fine mesh do 

K_err = compute relative decrease error rate on K 

if K_err > max_err then 

max_err = K_err 

end if 

end do 

adapted_mesh = new empty_mesh 

for each element K of coarse_mesh do 

if K_err > coef * max_err then 

choose a combination of refinements on element K from 

fine_mesh to adapted_mesh 

else 

add K from coarse_mesh to adapted_mesh 

end if 

end do 

coarse_mesh = adapted_mesh 

output fine_u 

until max_err < desired_err 

return (fine_u, fine_mesh) 

 
Alg. 1 hp-adaptive finite element method algorithm 

 

II. PROBLEM FORMULATION 

The process of elastic squeezing of a material can be 

modeled with linear elasticity [8], as shown below. 

A. Strong Form 

In its strong form, the problem can be described as follows: 

given   Rxgxg iDi i
 0: ,  , 

kl  and 0

ij , find 

Rui :  the displacement vector field such that  

0, jij on                       (6) 

ii gu  on 
iD     

                    (7) 

 where: 

 ij  is the stress tensor, defined in terms of the 

generalized Hooke’s law  

 
0

ijklijklij c  
                              

(8) 

ijklc  are elastic coefficients (known for a given material), 

 
0

ij is the initial stress, 

 ij  is the strain tensor, defined to be  jiu , , the 

symmetric part of the displacement gradients 

 
2

,,

,

ijji

jiij

uu
u


                         (9) 

 iu  is the displacement vector. 

 jiu ,  are displacement gradients.  

B. Weak Form 

The weak formulation is obtained by multiplying (6) by 

test functions ii Vw   and integrating by parts over  .  

0,  


dnwdw jijiijji                   (10) 

Since ij  is symmetric tensor, then   ijjiijji ww  ,,  , 

and 0iw  on  , we get 

  0, 


dw ijji                               (11) 

Finally, we substitute (8) into (11) and get  

     


dwducw ijjilkijklji

0

,,),(   (12) 

since  jiij u , . 

C. Abstract Index-Free Notation 

For implementation purposes, the most convenient is the 

following form: 

 

Find Vu  such that  

)(),( wuwa  for all Vw                  (13) 

where 


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 (15) 
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III. NUMERICAL RESULTS 

The above problem has been supplied to an 

implementation of the hp-FEM described by the first author 

of this work in [8]. Material properties (Young modulus and 
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Poisson coefficient) have been read form a 3D bitmap, where 

their values were proportional to the color saturation. The 

derivatives were estimated using finite differentials. 

It took 4 iterations of the adaptive algorithm to locate 

peculiarities for this problem and as an outcome we obtained 

the results decapitated in Fig. 7-Fig. 9. 

 

 
 

Fig. 7. Strain along Z axis after first and fourth iteration of the adaptive 

algorithm 

 

 
Fig. 8. Strain along X axis after first and fourth iteration of the adaptive 

algorithm 

 
Fig. 9. Strain along Y axis after first and fourth iteration of the adaptive 

algorithm 

 

As we can see, some strain components which seemed 

regular and insignificant at first turned out to be quite serious 

and complex after adaptation. This is especially true for the X 

axis component, but improvement of solution quality has 

been observed along the other axes too (see Fig. 10). 

 

 

Fig. 10. Error decrease rate [%] with the increase of total number of degrees 

of freedom (base functions) in the coarse mesh 

 

 
 

Fig. 11. Graphical notation used in Fig. 12 for various polynomial orders of 

approximation on element edges and faces 

 

Such  a significant error decrease in so few iterations was 

possible thanks to a careful choice of mesh refinements made 

by Alg. 1. The refinement of computational mesh in 

subsequent iterations has been indicated in Fig. 12. 

 

 

 

 

 
 

 

Fig. 12. Coarse computational meshes in subsequent iterations, presented 

using the convention from Fig. 11. Top left figure decapitates is the initial 

uniform mesh, whereas the bottom figure presents the final mesh after 4 

iterations. 
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IV. CONCLUSION 

In this paper, we have shown how hp-adaptive finite 

element method can be applied to a practical 3D problem and 

presented how the adaptivity affects the solution in 

subsequent iterations. The material coefficients we used 

came directly from a 3D bitmap of the processed material, 

where material parameters of a given part were proportional 

to its color. We have observed an exponential decrease of the 

error estimate, as expected theoretically. 
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