
  

 

 

 

  

 

 

 

 

 

algorithm to find optimal or near optimal path. In most of path 

planning methods, the environment is limited to two 

dimensions and obstacles are presented by polygon shapes 

[4]-[8]. So far, many methods have been introduced to 

describe the environment such as visibility graph [9], Voronoi 

diagram [10], MAKLINK graph [11] and cell decomposition 

[12]. Various search algorithms have been used such as 

artificial potential field method [13], neural networks [14], 

ant colony algorithm [15], particle swarm optimization [16] 

and genetic algorithm [2]-[6], [8]. Each method has its own 

advantages over others in certain aspects. 

In the recent years, genetic algorithms have been widely 

used in the field of path planning for mobile robots. So far, 

most of presented algorithms are based on fixed-structure and 

they have not addressed path planning and online 

reconfiguring, simultaneously [16]. So they are not suitable 

path planning methods for modular robots. In this paper, 

according to the capability of new designed modular robot to 

change configurations, the GA is presented to produce a 

proper path and configuration pattern for crossing the 

environment. Path evaluation criteria are combined with 

minimum time, lowest energy and shortest distance. 

Chromosomes are consisting of different paths and different 

configurations with variable length. In our method, unlike 

most of earlier methods, all chromosomes in initial population 

and after applying GA operators are feasible without having 

collision with obstacles. Simulation results prove that our 

method can successfully plan a path and configuration pattern 

for modular robots with convincing performance, compared 

to fixed-structure robots. 

The rest of the paper is organized as follows: in Section II, our 

new module design is explained in details together with its 

local navigation method. The proposed GA is introduced in 

Section III. In Section IV, Dijkstra algorithm is used for 

modular robot path planning. In Section V simulation results 

of GA and Dijkstra algorithm in various environments are 

presented and analyzed. Finally, the conclusion and 

suggestions for future research are given in Section VI.  

 

II. NEW MODULE DESIGN 

   For testing the proposed path planning algorithm, we use a 

set of 3-DoF modular robots called ACMoD. These modules 

have the capability to reconfigure automatically from terrain 

to terrain, as required in our method. Each module consists of 

two wheels rotating freely compared to a central joint which is 

limited, but more powerful. This design helps to create more 

flexible configurations especially for legged robots. Fig. 1 

shows ACMoD with some feasible configurations regarding 

physical limits of selected servomotors and joints. 

Sajad Haghzad Klidbary, Saeed Bagheri Shouraki, and Salman Faraji 

Finding Proper Configurations for Modular Robots by 

Using Genetic Algorithm on Different Terrains  

360DOI: 10.7763/IJMMM.2013.V1.78

Abstract—This paper presents a novel self-reconfigurable 

robotic system named ACMoD where each module can move 

itself individually. It can also attach to other modules to build 

various configurations and change this configuration adaptively 

on different terrains. In this paper, we have proposed Genetic 

Algorithm for optimizing the path of modular robots through a 

static grid of different terrain blocks. Each chromosome consists 

of path and modular robot configurations. Solution of the 

proposed algorithm is a proper path and configuration pattern

for crossing the environment with minimum effort related to a 

pre-defined multi-objective function. Finally, for investigating 

the efficiency of the proposed algorithm, the performance of 

proposed algorithm is compared to Dijkstra algorithm in 

different environments.

Index Terms—Dijkstra algorithm, genetic algorithm, 

modular robots, path planning.

I. INTRODUCTION

Self-reconfigurable modular robots (SRMR) refer to a 

class of robots which are made of large number of identical 

and independent small components called modules. They can 

connect to each other and reconfigure into different shapes [1]. 

These kinds of robots have the capability to reconfigure and 

adapt to different task, conditions and environments. This

ability is the main reason bringing such robots into 

consideration in recent years. The path planning problem has 

been one of the important issues in mobile robotics [2]-[4].

Path planning is an optimization problem [2] which is defined 

to find a suitable collision-free path for robot from the start 

location to the goal with different evaluation criteria [3], [5].

Path planning generally can be divided into two classes that 

include path planning in static [6], [7] and dynamic [8]

environments. In static path planning, the whole information 

of environment is known and global path can be generated. 

However, in dynamic path planning the robot respond to the 

environment change which is known as sensor based 

approach [6], [8]. This paper is focused on global path 

planning in static environment. Generally, the process of path 

planning has two main steps that include environment 

description (environment model) and using a proper search 

Manuscript received December 11, 2012; revised January 30, 2013.  

F. A. Sajad Haghzad Klidbary is with Aritificial Creatures Lab, Electrical 

Engineering School, Sharif  University of Technology, Tehran, Iran (e-mail: 

haghzad@ee.sharif.edu). 

S.B. Saeed Bagheri Shouraki is head of Aritificial Creatures Lab, 

Electrical Engineering School, Sharif  University of Technology, Tehran, 

Iran (e-mail: bagheri-s@sharif.edu).

T.C. Salman Faraji is in Ecole Polytechnique Fédérale de Lausanne

(EPFL), Switzerland (e-mail: salman.Faraji@epfl.ch).

Find some videos showing the performance of the robot at 

http://ee.sharif.edu/~acl/Projects/ACMoD.

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, November  2013



  

 
Fig. 1. Schematic of the module with some simple configurations that are 

feasible regarding limited torque of the selected servomotors actuating the 

three joints. Note that the center of mass will be adjusted a little under the 

geometric center of the robot defined by three dotted orange axes. This 

enables the robot to do locomotion simply by displacing this point compared 

to the contact point of the wheels like a Segway robot, but being stable. 
 

   An important difference between this design and other 

conventional modular robots is the ability to move 

individually and finding each other. Such capability is also in 

[17], but the individual movement of this robot is not so 

robust to possible roughness in the terrain. Our design 

benefits from large wheels that can perform better in different 

environments. With these wheels, the module cannot rotate by 
0180  from the middle which is not needed also, since most of 

common legged robot structures and also other wheeled 

robots could be built by this simple design as shown in Fig. 1. 

This introduces a simpler way to reconfigure for a new terrain. 

When the robot decides to change configuration, it 

disassembles itself first, then all modules get far enough from 

each other and the new configuration starts to build. 

Individuals are commanded by a leader among them to pursue 

a pass toward a target robot in order to make a new connection. 

An underlying assumption is that they can create a rough local 

map of their relative positions and orientations. There are lots 

of algorithms in literature that help a robot go to the 

destination whereas avoiding obstacles. This work takes 

advantage from the ERRT algorithm like [18] and [19] which 

is robust to environment uncertainties. Basically, this 

algorithm navigates the slave robot into a circle in front of the 

target joint of the master robot which waits and does not move. 

After the arrival of slave robot in the circle, the navigation 

continues with potential fields toward the exact desired 

location where the two joints can make a connection. We 

assume a maximum detectable distance for a joint determined 

by design so that it can be recognized by another joint to make 

the connection. This variable determines the accuracy of the 

localization algorithm too. This scenario is depicted in Fig. 2. 

   This abstract design is studied well in terms of feasibility 

in [20] and is currently being developed at ACL. Modules are 

simulated as well using Microsoft DirectX and Nvidia PhysX 

libraries as developed in [20]. All the parameters used in 

simulations are determined by specifications of selected off 

the shelf components for the robot. We also assume a perfect 

localization algorithm during reconfiguration process for the 

purpose of this work. 

 

 
Fig. 2. Navigation algorithm used in reconfiguration process of the modules. 

On the right image (b), the yellow path shows the outcome of the ERRT 

algorithm. This path ends up in a circle in front of the target joint in the 

master robot. On the left image (a) which shows the circle from top view, 

artificial potential fields navigate the robot locally to the target point where 

the two joints are close enough to attach. Note the spiral component added to 

normal potential fields right at the destination which causes the robot to 

rotate constantly and not being stopped with an undesired orientation. 

 

III. PROPOSED METHOD 

Our path planning algorithm for modular robots is based on 

Genetic algorithm (GA). It is a randomized search technique 

based on the principle of survival of the fittest in nature [4], 

[7]. In this section the proposed GA will be discussed in 

details. 

A. Environment Representation 

    Environment description is the first step to plan the path. 

We assume that the environment is static and does not contain 

any moving objects. Another assumption is that our approach 

is global, i.e., we have complete knowledge about the 

environment as shown in Fig. 3. 

We represent the environment with a grid of different 

terrains to establish a 2D work space model. This model is 

represented by orderly numbered grids as in [2], [4], [7]. This 

method is better than Cartesian coordinates [3], [5] because 

serial number representation is more concise and saves 

memory [21]. In this representation each grid cell is a specific 

type of terrain that at least one of the modular configurations 

can cross it.  Fig. 4 shows our method. Unlike [2], we are not 

concerned about the smoothness of the path for the purpose of 

this work, assuming that most of the energy consumption is 

related to passing the terrain. 

B. Chromosome Representation 

One of the important issues in GA is chromosome 

representation [4]. In order to apply GA to path planning, we 

need to encode the path into genes. A complete set of genes 

form a chromosome. As it is shown in Fig. 4, unlike previous 

works [2], [3], [7] that chromosomes only represent a 

sequence of grids, in this paper, a valid chromosome 

represents a sequence of grid labels and configurations. The 

first gene always contains the start location of the robot and 

the one before the last contains the goal cell. In this 

representation the chromosome's length is variable. 

 

In most of previous proposed GA algorithms, initial 

361

C. The Generation of Initial Population

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, November  2013



  

population is generated randomly [4], [7], [21]. This is quite 

simple, but requires defining additional operators and using 

penalty terms in fitness function to correct or distinguish 

between feasible and infeasible path [4], [7]. These methods 

therefore increase computation time drastically.  

 

 
Fig. 3.  Modular robot environment and symbols that are used for each 

terrain in simulations. To increase accuracy of the solution, the resolution of 

grids can be increased in case of a real environment. 

 

 
Fig. 4. The environment in Fig. 3 represented by orderly numbered grids 

referred to as robot planning area. The black grids are obstacles. Obstacle for 

modular robots means that no modular configuration can pass it. The blue 

grids show a valid path that connect the start cell to the goal. Chromosomes 

are therefore encoded by integer numbers beginning from start cell and 

ending in the goal one. For creating a chromosome, each cell is assigned to 

two genes. The first gene represents the number of grid cell and the second 

gene represents a configuration for that cell. 

 

In our method the initial population is generated randomly, 

but all paths are feasible so that to use few GA operators 

which decreases the computation time. We assume that the 

robot can move in eight cardinal and inter-cardinal directions. 

Generation of the initial population consists of the following 

steps: 

1) Step 1: First assign a small value (B) to free cells and 

infinite to blocked ones. Also assign infinite borders 

(grey cells), as shown in Fig. 5. 

2) Step 2: Define R as a direction vector which shows the 

possibility of movement for the robot in eight directions 

as shown in Fig. 5. 

3) Step 3: Draw a line from start cell to the goal. The most 

possibility is then assigned to the three directions around 

this line (green dots in Fig. 5). 

4) Step 4: Calculate the Euclidean distance between free 

grids to the center of obstacle grids, then add sum of 

inverse of Euclidean distances to previous values of grids 

and initial small value (B) by the following equation:   

1

(1/ )
L

i j

j

G B r


                        (1) 

       In above equation, L is number of obstacles and for each     

       grid ( iG ) we calculate the equation. 

5) Step 5: During the movement of the robot from starting 

location to the end, in each grid cell the vector R is 

divided by the values of adjacent grids (in Step 4) to form 

a new possibility vector. The next step of the motion is 

obtained by using Roulette wheel selection method on the 

new possibility vector. 

6) Step 6: Apply short-cut and Loop Remove operators to 

remove unnecessary cells from the path, if any. 

7) Step 7: Finally, for each grid cell of this path assign a 

configuration randomly. 

In case of an obstacle-free environment, to generate initial 

population we do not need step 1 and 4. Also in step 5, we 

only use the Roulette wheel selection. 

 

 
Fig. 5. In this figure we have environment with 10*10 grids, B is a small 

value assigned to free cells and r1 and r2 are Euclidean distances. For each 

grid cell the formula mentioned in figure is evaluated. Each step of 

generating the initial population is shown in figure. After generating a valid 

path, for each grid cell of this path we assign a configuration randomly. 

D.  Evolutionary operators  

Our proposed GA uses crossover, mutation and two 

customized operators, short-cut and Loop Remove. These 

operators are explained bellow: 

1) Selection: New generation is formed by selecting the 

chromosomes from previous generation and applying 

crossover, mutation and other operators. Roulette wheel 

selection used here is based on fitness function, where 

chromosomes with a small fitness function have more 

chance (possibility) to survive. 

2) Crossover: The crossover operation means combining 

two parents in order to exchange information between 

them. We use single-point crossover, i.e., one of the 

common genes of parent chromosomes (odd genes) is 

selected randomly and two new chromosomes are 

generated by combining parents from this common gene. 

362

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, November  2013



  

This operator is illustrated in Fig. 6. 

3) Mutation: This operator increases diversity of a 

population to prevent local convergence. Mutation 

alters one or more randomly selected genes of a 

chromosome. Our method uses single-point mutation 

and unlike crossover, operates on both odd and even 

genes as demonstrated in Fig. 6. 

4) Short-cut: This operator aims to reduce the total distance 

of a path. Short-cut deletes unnecessary intermediate 

cells that are between two other cells. An example is 

being shown in Fig. 6. 

5) Loop Remove: Sometimes after generating initial 

population or applying GA operators, some loops may 

appear in the path. This operator is used to delete these 

loops which are redundant. Fig. 6 demonstrates this 

operator as well. 

 

 
Fig. 6. Genetic operators: the crossover manipulates only odd genes (grid 

genes). As shown in figure, in this paper there are two kinds of mutations: 

grid mutation (for odd genes) and configuration mutation (for even genes). 

This operation has two constraints. In grid mutation, the path should remain 

continuous and in configuration mutation, the new configuration should be 

able to cross the cell. Short-cut and Loop Remove reduce path length. In [22], 

the convergence of GA for each of these operators is investigated. 

 

The fitness function is so important for the stability and 

convergence of GA [4], [14]. Each new generation is 

evaluated by a fitness function. Fitness functions are usually 

weighted sums of evaluation criteria [21]. In this paper, a 

proper path is evaluated according to the minimum time, 

minimum energy and shortest distance. Our cost function is a 

combination of time, energy and distance: 

1

1

1 1

1

( ( , ) ( , ))

( ( , ) ( , ))

N

T i i T i i

i

N

C i i C i i

i

F A a E e c b T e c

a E c c b T c c





 



    

   




        (2) 

1a b                                                                         (3)  

 

where N is the total length of a path which may vary for 

different chromosomes. ( , )T i iE e c and ( , )T i iT e c are the 

energy and time needed for  the configuration ic  to cross the 

environment
ie . 

1( , )C i iE c c 
 and 

1( , )C i iT c c 
represent energy 

and time needed to reconfigure the configuration 
ic   to 

1ic 
. a 

and b refer to the weights of influence of time and energy on 

the total cost and A is a coefficient proportional to the length 

of the shortest path traveled by the robot in each grid.  

We know all the costs for crossing different terrains and 

changing configurations together. This information is 

obtained by simulation tests. One of the energy tables is 

shown in Table. I and others are similar to [22].  

 
     

      c. 

e. 4-legged 3-legged Segvey Individual Snake 

Smooth 3.25 8.00 7.50 1.57 3.60 

Fence 3.80 5.00 inf inf 4.70 

Bridge inf inf inf 1.57 3.60 

Cobble 3.60 5.20 9.90 inf 4.60 

Stair 5.00 7.00 inf inf inf 

Gap 3.65 4.20 inf inf 4.75 

Hill 5.50 9.90 inf inf 6.50 

 

In all steps of optimizations, the normalized values of these 

tables are used to find the proper path. 

 

IV. DIJKSTRA ALGORITHM 

 In order to measure the performance of our proposed 

algorithm, we compare it with Dijkstra algorithm. Dijkstra is a 

deterministic optimization algorithm used for finding the 

optimal shortest path from a start node to a goal node in a 

graph [3], [23]. 

So far, most of presented Dijkstra algorithms are based on 

fixed-structure [10], [23]. However in this paper, Dijkstra is 

used for modular robot path planning. In this algorithm for 

each vertex of the grid, we put five nodes as we have five 

configurations of our modular robot. These nodes are 

connected to each other by edges as shown in Fig. 7. The 

weight of each edge is proportional to configuration, type of 

terrain and configuration change during the robot motion. 

For each edge, cost of crossing the grid (edge coefficient) is 

obtained by following equation: 

 

'

'

( ( , ) ( , ))

( ( , ) ( , ))

k T i i C i i

T i i C i i

W a c E e c E c c

b c T e c T c c

   

   
            (4) 

                    

Here, i represents grid number, the value of i' can be 

variable and depends on next grid number and c is 1 for 

horizontally and vertically move, and is 2  for diagonal 

move. ( , )T i iE e c , ( , )T i iT e c , '( , )C i i
E c c , '( , )C i i

T c c , a and b  are 

the same as cost function proposed for GA. 

In Section III the proposed GA was explained and in 

Section IV we introduced the graph that is used for Dijkstra 

algorithm. In next section we will investigate the results of 

363

E. Evaluation (Fitness Function)

TABLE I : ENERGY (KJ) CONSUMPTION OF DIFFERENT CONFIGURATIONS 

OVER DIFFERENT TERRAINS ( ( , )T i iE e c )

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, November  2013



  

both algorithms for path planning of our new modular robot. 

 
Fig. 7.  Part of a graph that Dijkstra algorithm is applied on. For each vertex 

of the grid, five nodes are laid due to five configurations used for modular 

robot. In this graph the edge that connects vertex 1 to vertex 1 (on the other 

side of the grid) tells that the configuration 1 (4-legged) passes the grid 

without any reconfiguration. As another example, the edge connecting 

vertex 1 to vertex 2 shows that the configuration 1 (4-legged) passes the grid 

and reconfigure to configuration 2 (3-legged). 

 

V. SIMULATION RESULTS 

In this section, optimization results are compared for both 

Dijkstra and GA algorithms, implemented using MATLAB. 

All the simulations are done on a computer with Intel core i5, 

2.4 GHz CPU. 

The probability of grid mutation 1mp   is 0.3, configuration 

mutation 
2mp  is 0.7, and probability of crossover  cp  is 1. 

Elitism strategy is also used to preserve the best chromosomes. 

In each generation, 20 percent of population without applying 

any genetic operators are transferred to next generation, and 

then GA operators are applied to all chromosomes according 

to their possibilities [2], [4]. Then the whole generation is 

replaced by offsprings. In all simulations, a and b are 0.5. 

A. Small Environment 

For investigating the solution of proposed GA, we 

compared proposed GA with Dijkstra algorithm. We initialize 

both algorithms with same first cell, first configuration and 

the goal cell. The simulation results for both GA and Dijkstra 

algorithm are shown in Fig. 8. 

The process of guiding the robot from start location to the 

goal is based on a state machine. Each configuration has its 

own Central Pattern generator (CPG) that performs the 

locomotion. All of them can execute forward, backward and 

steering commands. Therefore we navigate them from point 

to point knowing the optimum path and configuration pattern 

coming from optimizations. If a reconfiguration is required, 

the modular robot disassembles and assembles again as 

described in Sec. II. In Table II output of Dijkstra and Genetic 

algorithms with initial population size of 50 and after 50 

iterations are obtained. In terms of performance, this cost is 

94.9 present of Dijkstra algorithm. We run GA with various 

population sizes and iterations. The goal is to investigate the 

behavior of GA in each case two measures are typically used 

to compare algorithms quantitatively, first the time 

complexity of the algorithms, and second the quality of 

 

 

 
   

  

 
   

      

     

       

     

 

 

   Here, algorithms are tested in large environments and the 

results are shown in Table III. 

 
TABLE III : COST OF GA AND DIJKSTRA IN AN ENVIRONMENT WITH 

OBSTACLES AND VARIOUS SIZES (THE FIRST COLUMN IS NUMBER OF CELLS, 

INITIAL POPULATION FOR GA IS 150 [S]) 

GA 
Iteration=20 Iteration=30 Dijkstra 

Cost Time Cost Time Cost Time 

100*100 71.25 51.13 69.02 73.44 59.04 60.95 

140*140 101.65 72.49 96.91 103.59 83.13 118.93 

150*150 115.87 77.48 110.57 114.27 Out of Memory 

 

Performance of these algorithms depends on parameters of 

algorithms and input size. It is clear that the environment 

resolution is the main factor in complexity and computational 

time of algorithm. Simulation results show that analytical 

method like Dijkstra is better than heuristic algorithms like 

GA in lower resolutions of environment. Simulation results 

tell us that with small input size the path obtained by GA 

needs more time than Dijkstra, but when the input size is too 

large Dijkstra becomes inefficient. In large sizes GA becomes 

more effective and tries to find a nearly optimal solution 

364

solution [3]. Table II shows the results of proposed GA and 

Dijkstra algorithms. In order to demonstrate the performance

of our method, we calculate the average of GA results after 20 

runs.

Fig. 8. Simulation results for both Genetic and Dijkstra algorithms. An 

environment with 10*10 cells and 32 obstacles are used in this test. "S" is the 

start cell and "G" stands for the goal. In simulations we use the first five 

configurations that are labeled in Fig. 1 which all consist of seven modules. 

Seven terrains that are determined in Fig. 3 are used in simulations. After 

applying Dijkstra, for each cell the shortest internal path is calculated. In the 

figure green symbols determine the final cells and configurations for Dijkstra

algorithm and red symbols determine the cells and configurations of the GA 

after five iterations. For both algorithms robot moves on shortest path in each 

determined cell.

TABLE II : COST OF GA AND DIJKSTRA ALGORITHMS IN AN ENVIRONMENT 

WITH OBSTACLES AND 10*10 GRIDS (THE FIRST COLUMN IS INITIAL 

POPULATION)

GA
Iteration=20 Iteration=30 Dijkstra

Cost Time(S) cost Time(S) Cost Time(S)

20 8.47 0.89 8.45 1.31

7.85 0.7830 8.40 1.34 8.35 1.86

50 8.31 2.10 8.27 3.02

B. Large Environment

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, November  2013



  

 

  

 

 

 

  

  

 

 

 

 

  

 

 

 

 

 

  

 

   

 

  

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

365

  

provided that we tune parameters to allow the algorithm 

search all the space. Dijkstra for small input works well and it 

requires less time to find the optimal path. However when the 

input is too large, as shown in Table III, shortage of memory 

occurs or it takes a lot of time to find the optimal path. In GA 

we can tune the execution time by changing GA parameters 

like number of generations, reducing the quality of favorite 

solution, population size, mutation and crossover 

possibilities. 

 

VI. CONCLUSION 

In this paper we presented a new module being able to 

move individually. We proposed GA for modular robots 

global path planning in static environment. In this method 

chromosomes consist of different paths and configurations 

with variable length. Initial population is generated randomly, 

but all paths are feasible to save computation time. We 

consider three parameters in fitness function: minimum time, 

lowest energy and shortest distance. MATLAB simulation is 

used to verify the proposed algorithm both in terms of quality 

and running time compared to Dijkstra algorithm. Simulation 

results show a tradeoff between quality of path and 

optimization time. An interesting topic for future research 

would be to improve the proposed algorithm, aiming to find 

the optimal path for modular robots in a dynamic 

environment.  

ACKNOWLEDGMENT 

The authors would like to thank Ramin Halavati for his 

kind discussions. 

REFERENCES 

[1] Z. Guanghua, D. Zhicheng, and W. Wei, “Realization of a Modular 

Reconfigurable Robot for Rough Terrain,” in Proc. the IEEE Int. Conf. 

on Mechatronics and Automation, 2006, pp. 289-294.  

[2]  C.-C. Tsai, H.-C. Huang, and C.-K. Chan, “Parallel Elite Genetic 

Algorithm and Its Application to Global Path Planning for 

Autonomous Robot Navigation, ” IEEE Trans. on Industrial 

Electronics, vol. 58, no. 10, pp. 4813-4821, October 2011. 

[3] A.R. Soltani, H. Tawfik, J. Y. Goulermas, and T. Fernando, “Path 

planning in construction sites: performance evaluation of the Dijkstra, 

A*, and GA search algorithms,” Advanced Engineering Informatics, 

vol. 16, pp. 291-303, 2002. 

[4] Y. Hu, S. X. Yang, “A Knowledge Based Genetic A1gorithm for Path 

Planning of a Mobile Robot,” in Proc. the IEEE Int. Conf. on Robotics 

and Automation, 2004, pp. 4350-4355. 

[5] M. Naderan-Tahan and  M. T. Manzuri-Shalmani, “Efficient and Safe 

Path Planning for a Mobile Robot Using Genetic Algorithm,” IEEE 

Cong. on Evolutionary Computation, 2009, pp. 2091-2097. 

[6] I. AL-Taharwa, A. Sheta, and M. Al-Weshah, “A Mobile Robot Path 

Planning Using Genetic,” Journal of Computer Science, vol.4, no. 4, 

pp. 341-344, 2008. 

[7] Z. Yao and L. Ma, “A Static Environment-Based Path Planning 

Method by Using Genetic Algorithm,” in Proc. Int. Conf. on 

Computing, Control and Industrial Engineering, 2010, pp. 405-407. 

[8] S. C. Yun, S. Parasuraman, and V. Ganapathy, “Dynamic Path 

Planning Algorithm in Mobile Robot Navigation,” in Proc. IEEE Symp. 

On Industrial Electronics and Applications, 2011, pp. 364-369. 

[9] J. A. Janet, R. C. Luo, and M. G. Kay, “The Essential Visibility Graph: 

An Approach to Global Motion Planning for Autonomous Mobile 

Robots,” in Proc. IEEE Int. Conf. on Robotics and Automation, 1995, 

pp. 1958-1963. 

[10] H. Dong, W. Li, J. Zhu, and S. Duan, “The Path Planning for Mobile 

Robot Based on Voronoi Diagram,” in Proc. IEEE Int. Conf. on 

Intelligent Networks and Intelligent Systems, 2010, pp. 446-449. 

[11] W. Yu-Qin and Y. Xiao-Peng, “Research for the Robot Path Planning 

Control Strategy Based on the Immune Particle Swarm Optimization 

Algorithm,” in Proc. Int.. Conf. on Intelligent System Design and 

Engineering Application, 2011, pp. 724-727. 

[12] C. Cai and S. Ferrari, “Information-driven sensor path planning by 

approximate cell decomposition,” IEEE Trans. on Systems, Man, and 

Cybernetics, Part B: Cybernetics, vol. 39, no. 3, pp. 672-689, 2009. 

[13] E. Rimon and D. E. Koditschek, “Exact Robot Navigation Using 

Artificial Potential Functions,” IEEE Trans. on Robotics and 

Automation, vol. 8, no. 5, October 1992, pp. 501-518. 

[14] D. Xin, C. Hua-hua, and G. Wei-kang, “Neural network and genetic 

algorithm based global path planning in a static environment,” Journal 

of Zhejiang University Science, pp. 549-554, 2005. 

[15] T. Guan-Zheng, H. Huan, and S. Aaron, “Ant Colony System 

Algorithm for Real-Time Globally Optimal Path Planning of Mobile 

Robots,” Acta Automatica Sinica, vol. 33, no. 3, pp. 279-285 March 

2007. 

[16] T. Liu, C. Wu, B. Li, J. Liu, “The Adaptive Path Planning Research for 

a Shape-shifting Robot Using Particle Swarm Optimization,” in Proc. 

Int. Conf. on Natural Computation, 2009, pp. 324-328. 

[17] G. G. Ryland and H. H. Cheng, “Design of iMobot, an Intelligent 

Reconfigurable Mobile Robot with Novel Locomotion,” ICRA 2012, 

pp. 60-65. 

[18] Jr. James, J. Kuffner, and S. M. LaValle. “RRT-Connect: An efficient 

approach to single-query path planning,” in Proc. IEEE Int. Conf. on 

Robotics and Automation, 2000, pp. 995-1001. 

[19] V. R. Desaraju and J. P. How, “Decentralized Path Planning for 

Multi-Agent Teams in Complex Environments using 

Rapidly-exploring Random Trees,” in Proc. ICRA 2012, pp. 

4956-4961. 

[20] S. Faraji, “Design and Simulation of a new structure for mobile 

modular robots,” B.S. thesis, Dept. Elect. Eng., Sharif Univ. of 

Technology, Tehran, Iran, 2011. 

[21] L. Weiqiang, “Genetic Algorithm Based Robot Path Planning,” IEEE 

Int. Conf. on Intelligent Computation Technology and Automation, 

2008, pp. 56-59. 

[22] S. H. Klidbary, “Finding Proper Modular Robots Structure by Using 

Genetic Algorithm,” M.S. thesis, Dept. Elect. Eng., Sharif Univ.  of 

Technology, Tehran, Iran, 2012. 

[23] H. Wang, Y. Yu, and Q. Yuan, “Application of Dijkstra algorithm in 

robot path-planning,” in Proc. Second Int. Conf. on Mechanic 

Automation and Control Engineering, 2011, pp. 1067-1069. 

 

 

Sajad Haghzad Klidbary received the B.Sc. degree 

in Electrical Engineering in 2009 from Razi 

University, Kermanshah, Iran, and M.Sc. degree on 

Digital electronics from Department of Electrical 

Engineering, Sharif university of Technology, Tehran, 

Iran in 2012. His research interests include robotics, 

artificial intelligence, Neural Networks, Genetic and 

Evolutionary Algorithms and FPGA circuit design 

 

 

 

Saeed Bagheri Shuraki received his B.Sc. in 

Electrical Engineering and M.Sc. in Digital 

Electronics from Sharif University of Technology, 

Tehran, Iran, in 1985 and 1987. He joined soon to 

Computer Engineering Department of Sharif 

University of Technology as a faculty member. He 

received his Ph.D. on fuzzy control systems from 

Tsushin Daigaku, Tokyo, Japan, in 2000. He 

continued his activities in Computer Engineering Department up to 2008. 

He is currently a Professor in Electrical Engineering Department of Sharif 

University of Technology. His research interests include control, robotics, 

artificial life, and soft computing.  

 

 

Salman Faraji received B.Sc. degree from Sharif 

University of Technology in Electrical Engineering 

and Digital Systems, Tehran, Iran in 2011. He 

is currently a M.Sc. student in Robotics, Ecole 

Polytechnique Fédérale de Lausanne (EPFL), 

Switzerland. His interests in research include modular 

robots, distributed intelligence, legged robots 

locomotion and inverse dynamics.  

 
 

 

 

 

 

 

 

International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, November  2013


