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Abstract—In this paper, a PD-like self-tuning fuzzy 

controller based on tuning of scaling factors (STFC) by 

gradient descent method is presented. The tuning scheme 

allows the tuning of the scaling factors to be on-line. Tuning 

scaling factors is more effective and simpler than tuning all the 

parameters of standard fuzzy logic controller (FLC). The aim 

is to obtain good performance parameters, such as the rise 

time, the overshoot, the steady-state error. Experimental 

results of an inverted pendulum system with STFC controller 

show a better performance in the transient and steady state 

phases than other classical controllers like PD, PID, auto-tuned 

PID controller (PID-AT), and linear quadratic regulator 

(LQR).  
 

Index Terms—Fuzzy logic controller (FLC), scaling factors, 

gradient decent method, performance indices.  

 

I. INTRODUCTION 

For enhancing control systems, there are two important 

information sources: sensors, which provide measurements 

of variables, and human experts who give linguistic 

instructions and descriptions about the system. Fuzzy logic 

controller (FLC) was created to combine these two different 

types of information by handling information coming from 

human operators. The main advantage of the FLC is that it 

can be applied to plants that are difficult to model 

mathematically [1]. Self-tuning of a FLC aims to adapt the 

controller to different operating conditions [2]. For 

successful design of a FLC, proper selection of input and 

output scaling factors and/or the tuning of other controller 

parameters, such as the representation and construction of 

the rule base or the determination of the position and shape 

of the membership functions, are conclusive jobs [2]. 

Basically, there are two different tuning approaches to 

achieve optimal parameters for a FLC: on-line and off-line 

tuning [2]. Off-line tuning scaling factor using genetic 

algorithm optimization method can be found in [3]. On-line 

tuning membership function using gradient descent 

optimization  method is discussed in [4]-[6]. On-line tuning 

scaling factor using fuzzy tuner is demonstrated in [7]-[9]. 

The authors of [10] have used Neuro-Fuzzy tuner and in [1], 

[11], [12] used the gradient descent optimization method. 

In this work, we introduce an auto-tuning mechanism for 

the scaling factors of a PD-type FLC. The gradient descent 

method is employed to optimally determine them on-line. 

 
 

Manuscript received January 4, 2014; revised July 23, 2014. 
The authors are with the Mechanical Engineering Department, Assiut 

University, 71516 Assiut, Egypt (e-mail: gamalengineer1@yahoo.com).  

This algorithm along with other classical controllers is 

tested experimentally using an inverted pendulum mounted 

on a cart. The inverted pendulum is a highly nonlinear and 

open-loop unstable system [13], [14]. Inverted pendulum 

system is often used as a benchmark for verifying the 

performance and effectiveness of control algorithms 

because of the simplicity of its structure [15]. Results show 

the effectiveness of the proposed control system.  

The paper is organized as follows. Section II introduces 

the mathematical model of the inverted pendulum. Section 

III gives a brief description about classical controllers which 

are experimentally tested in this work. In Section IV, we 

derive the auto-tuning algorithm for the scaling factors of 

the FLC. Section V describes the experimental setup. 

Section VI discusses the experimental results and Section 

VII offers our concluding remarks.  

 

II. INVERTED PENDULUM MODEL 

This Section provides description of the inverted 

pendulum used in this study. Fig. 1 shows the free body 

diagram. Using Newton’s second law, it can be easily 

shown that the dynamic equations of motion are as follow: 
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Fig. 1. Free body diagrams of (a) the cart and (b) the pendulum. (c) 

determining the required distances.  

 

The symbols used in (1) and (2) and their numerical 

values are defined (see Table I).  
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TABLE I: PARAMETERS OF THE INVERTED PENDULUM 

Symbol Parameter Value Unit 

M Mass of the cart 0.5    
  Mass of the pendulum 0.2    
  Viscous damping coefficient 0.1       
   Length of the pendulum 0.3   

  Mass moment of inertia of 

the pendulum 

0.0015       

g Acceleration of gravity 9.8      
   Input force - N 

 

The linearized model equations are 
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We used equations (3) and (4) for solving the Riccati 

equation in LQR controller to get the optimal state feedback 

gains.  

 

III. CLASSICAL CONTROL ALGORITHMS 

A. LQR (Liner Quadratic Regulator) 

The LQR method is a robust technique for designing 

controllers for complex systems that have strict performance 

requirements aiming at finding the optimal controller [16]. 

The aim of the stabilizing controller is to balance the 

inverted pendulum around vertical position. The state space 

model has been determined using the linearized model (3) 

and (4) with system parameter values as given in Table I. 

Then the Riccati equations are solved and a feedback gain is 

determined off-line. This gain will lead to optimal results 

evaluated from the defined performance index [3], [5], [6]. 

LQR method followed in this work is based on the 

following state-space model for  
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where    is pendulum angle measured from vertical 

reference,  ̇  is rotational speed of pendulum,   is cart 

position,  ̇ is cart speed, and u is input force. By solving the 

Riccati equation the optimal gain vector is     

[              ] .  

B. The PID Controller Using (Ziegler – Nichols) Tuning 

Rule  

Here, a PID controller for the angle of the inverted 

pendulum is to be designed, not considering the pivot 

position control. The control structure of the inverted 

pendulum with PID controller is given in Fig. 2. The goal of 

the control design is to stabilize the angle of the inverted 

pendulum with PID controller [17]-[19]. The parameters of 

PID controller of the inverted pendulum are estimated by 

using Ziegler – Nichols tuning rule, first set      

and      . Using the proportional control action only, 

increase the proportional gain     from 0 to a critical value 

K where the output first exhibits sustained oscillations. The 

critical gain     and the corresponding period      are 

experimentally determined. The critical gain was found to 

be           and the corresponding period             . 

Ziegler and Nichols suggested that we set the values of the 

parameters   ,    and    according to the formula (see 

Table II) [20].  
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pendulum
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Fig. 2. block diagram of a PID controller. 

 

TABLE II: ZIEGLER–NICHOLS TUNING RULE PARAMETERS  

Controller          

PID                        
 

C. PD Controller 

We have made fine tuning on    and    in order to 

determine them experimentally. The target of the tuning 

operation is to get the shortest rise time with suitable 

overshoot keeping stability of the pendulum in vertical 

position. The following values have been obtained       

    ,           .  

D. PID Controller with Fuzzy Self-Tuning of a Single 

Parameter Optimization (PID-AT) 

Because of its simplicity, this strategy has been widely 

considered [21]. This strategy consists of parameterizing the 

Ziegler–Nichols formula by means of a single parameter  , 

then using an online fuzzy tuning to self-tune this single 

parameter. In this strategy, the three PID parameters can be 

expressed as 
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where       and       are the ultimate gain and ultimate period, 

respectively. The value of α ( )  is determined by the 

following equation:  
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where  ( ) is the output of the fuzzy tuning system and γ is 
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a constant that has to be chosen in the range [0.2 – 0.6]. The 

fuzzy system has three membership functions for each of 

the two inputs (e and   ̇) and three membership functions for 

the output. The rule-base consists of 9 rules. The initial 

value of  ( ) is set equal to 0.5, which corresponds to the 

Ziegler–Nichols formula. With respect to the strategy, the 

tuning of the scaling coefficient of the fuzzy module and of 

the parameter γ is left to the user [21]. The control structure 

of inverted pendulum with PID-AT controller with Fuzzy 

self-tuning of a single parameter optimization is given in 

Fig. 3.   
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Fig .3. Block diagram of PID controller with fuzzy self-tuning of a single 

parameter. 

 

IV. FUZZY CONTROLLER WITH SELF TUNING SCALING 

FACTORS 

The simulation results in [22] show that the FLC with 

self-tuning scaling factors improves the performance than 

adjusting the membership function (MF). The scaling 

factors (SF) are the main parameters used for tuning the 

FLC [1]. We can find that any change in the SFs results in 

adjustment of the poles and zeros of the overall transfer 

function. This is the reason that changes in the SFs have a 

dramatic effect on the overall dynamics of the closed loop 

system [7]. We use the PD-like FLC; because it makes 

quick response with less oscillation than the PI- like FLC 

[1]. There have been considerable developments in the 

tuning of parameters in FLC systems using the gradient-

descent-based back-propagation (BP) algorithm, like 

methods in neural networks. The STFC is a four-layer feed 

forward network; it applies the gradient-descent-based BP 

algorithm to adjust the SFs. The goal is to minimize a cost 

function. Table III shows the rule base of a FLC in which N, 

Z and P denote negative, zero and positive respectively. Fig. 

4 shows output membership functions (singletons) of FLC, 

Fig. 5 shows input membership function of FLC, and Fig. 6 

shows the control structure of inverted pendulum with 

STFC controller.  

Here, the back-propagation (BP) algorithm is used to get 

the updating laws of the scaling factors    ,    and     . The 

goal is to minimize a cost function  , so that training pattern 

   is proportional to the square of the difference between the 

set point (sp) and the plant output  ( ) (angle error) and the 

square of the angle error change [20].  

 

TABLE III: RULE BASE OF THE FLC 
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Fig. 4. Singletons of the output membership functions.  
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Fig. 5. Input membership functions of the FLC.  
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Fig. 6. Block diagram of fuzzy logic controller with self tuning scaling 

factors.  

 

Let   be defined by 
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           Cost function 

           Error change weight 

          Set point 

 ( )    System output 

           Error 

Learning rule is [1]: 
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where 

    adjusted Scaling factor (SF) і =1, 2, 3 

    the learning rate 

    the momentum parameter 
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    ( )    ( )    (   )                     (13) 

 

The learning law for each layer in the feedback direction 

is as follow; 

Layer 4: 

The gradient of   in (10) with respect to an arbitrary 

weighting   
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For set point = 0 
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where  ( ) is the output of STFC after    tuning, and 
  ( )

  ( )
 

is the plant sensitivity.  

From (16) we can derive the propagation error term given 

by the output node 
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Then, we have 
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Hence, by (12) the scaling factor    is updated by 
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Layer 3: the error term    is derived as follows 
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Layer 2: the error term is computed 
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It can be shown that: 
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Therefore, the update rules for     ,    are 
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V. SYSTEM DESCRIPTION 

In this research, LabVIEW programming language was 

used for building the code for the different examined 

controllers. A picture for the experimental setup is given in 

Fig. 7. A PC with labview programming language is utilized 

to build STFC, PID-AT, LQR, PID, PD controllers. The 

angle of the pendulum is measured by one turn angular 

potentiometer and cart position is measured by 10 turn 

angular potentiometer. An interface card is used to 

communicate with the running variables to-and-from the 

inverted pendulum using labview program. The 

specifications of this system are described (see Table IV).  

 

controller

pendulum

Motor driver

cart

 
Fig. 7. Experimental setup. 
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TABLE IV: SPECIFICATIONS OF THE SYSTEM 

Elements Descriptions 

PCI-9112 
16-CH 12-Bit 110 KS/s Multi-Function DAQ 

Card 

Angle pot. One turn pot. 10Kω 

Position pot. 10 turn pot. 10Kω 

DC motor 220 RPM with gear box 24V-1A 

Operating 

system& 

program 

Windows XP and LabVIEW 8.6 

 

VI. EXPERIMENTAL RESULTS 

In this Section, the experimental investigation is 

presented. All the examined controllers have been initiated 

with initial angle error = 0.23 rad. Experimental results of 

the LQR and PID controller are illustrated in Fig. 8-Fig. 11. 

Figure 8 shows cart force, and Fig. 9 shows the error 

evolution of pendulum using LQR. As it can be noticed, 

LQR exhibits better performance than PID controller results 

which are shown in Fig. 10 and Fig. 11 regarding settling 

time and the overshoot. Both of them perform better results 

than PD controller which are given in Fig. 12 (cart force) 

and Fig. 13 (error angle of pendulum). However, the PID-

AT controller settling time and rise time are better than 

LQR controller, PID controller, and PD controller, as shown 

in Fig.14 (cart force) and Fig. 15 (error angle of pendulum). 

Results also show that the maximum overshoot in LQR 

controller is lower than PID-AT controller as given in Table 

5. On the other hand, the proposed STFC controller exhibits 

the best results as shown in Fig. 16 (cart position), Fig. 17 

(cart force) and Fig. 18 (error angle of pendulum). The time 

history of the scaling factors          of the STFC 

controller are illustrated in Fig. 19, Fig. 20, and Fig. 21. 

Also in force curves of these controllers, LQR is the lowest 

cart force fluctuation as shown in Fig.8. But the STFC is the 

lowest cart force overshoot as shown in Fig. 17. Over 

fluctuations have negative effects on the mechanical 

structure.  
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   Fig. 8. Cart force curve of LQR. 
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Fig. 9. Error of pendulum angle curve of LQR. 
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Fig. 10. Cart force curve of PID. 

 

E
rr

o
r 

A
n

g
le

 (
R

a
d

)

Time (Sec)
0 2 4 6 8

-0.4

-0.3

-0.2

-0.1

0

0.1

PID

 
Fig. 11. Error of pendulum angle curve of PID. 
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Fig. 12. Cart force curve of PD. 
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Fig. 13. Error of pendulum angle curve of PD. 
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Fig. 14. Cart force curve of tuning PID.  
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Fig. 15. Error of pendulum angle curve of tuning PID. 
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     Fig. 16. Cart position curve of scaling factor tuning. 
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      Fig. 17. Cart force curve of scaling factor tuning. 
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Fig. 18. Error of pendulum angle curve of scaling factor tuning. 
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Fig. 19. Time history of (  ). 
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Fig. 20. Time history of (  ). 
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Fig. 21. Time history of (  ). 

 

Table V presents a numerical comparison of the results of 

the five controllers for the response of a step input with an 

initial error of 0.32 rad. As it can be noticed, PID-AT 

exhibits the maximum overshoot while PD results have the 

maximum settling time and the maximum rise time. In 

comparison with PID-AT, PID, PD, and LQR controller, 

STFC exhibits minimum overshoot, rise time, and settling 

time.  

 
TABLE V: PERFORMANCE RESULTS OF THE TESTED CONTROLLERS 

 STFC  PID-AT LQR PID PD 

Max. Over shoot % 2.7 9.09 4.5 6.05 5.3 

Settling time, sec 0.37 0.4 0.42 0.43 0.45 

Rise time, sec 0.33 0.33 0.35 0.36 0.38 

 

VII. CONCLUSIONS 

In this work, an update law for the scaling factors of a 

PD-like FLC has been derived. The methodology is based 

on the gradient descent and back-propagation which is 

widely used in neural networks. The control algorithm, i.e. 

STFC, has been experimentally verified using an inverted 

pendulum mounted on a cart. Further we compare the 

results with classical controllers like PD, LQR, PID, and 

PID-AT. Experimental results for a step input show that the 

proposed STFC technique outperforms the other controllers.  
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