
  

 

Abstract—The complexity of mechatronic systems increases 

constantly due to market requirements. Traditional engineering 

approaches have troubles coping with the desired functionality. 

A major problem is the early and continuous integration and 

coordination of engineering disciplines (i.e. mechanic, electric, 

and software). To address this situation and to enable a 

concurrent engineering of participating disciplines, a 

model-based approach to early conception and subsequent 

refinement of mechatronic systems is proposed in this paper. 

This approach allows specifying a high-level mechatronic 

concept within a single editor and the refinement of this concept 

by integrating it with established engineering tools. In 

particular, the paper outlines the technical and methodical 

integration of discipline-specific tools such that refinement steps 

can be tested automatically and continuously. The suitability of 

the approach is shown along selected examples. Finally, the 

paper finishes with a reflection on the current state and an 

outlook on future research activities. 

 
Index Terms—Model-based development, concurrent 

engineering, mechatronic systems engineering.  

 

I. INTRODUCTION 

The machine and plant engineering is currently facing a 

large variety of challenges including shorter innovation and 

production cycles [1]. Besides technological improvements, 

the optimization of engineering processes is one key factor to 

remain successful on the market [2]. Current engineering 

processes are still characterized by serial process steps [3], 

discipline-specific procedures [4] and a lack of synchro-

nization between the involved disciplines [5]. In addition, the 

diversity of engineering tools that cope with discipline- 

specific engineering problems impedes the establishment of 

an integrated and interdisciplinary development approach [6]. 

A recent approach for coping with these challenges is the 

model-based development of mechatronic systems [7]. This 

development approach focuses the alignment of the entire 

process along one central and interdisciplinary system model. 

This model is constructed by engineers from all involved 

disciplines in an early development phase. Thereby a common 

understanding of the system to be developed can be derived 
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[7], mistakes can be avoided and system requirements can be 

considered appropriately [8]. However, these advantages are 

countered by the effort needed to build an additional model. 

For this reason, model-based development is currently 

applied rarely within machine and plant engineering [3]. 

Therefore, it is a reasonable attempt to establish the system 

model during the entire development process in order to 

justify the early modeling effort by savings in later phases. 

This leads to the need for integrating seamlessly the system 

model and established engineering tools so that engineers 

from all disciplines can use the early interdisciplinary 

development insights without additional efforts [9]. 

 

II. STATE OF THE ART IN MECHATRONIC SYSTEMS 

ENGINEERING 

In the following subsections recent approaches in the fields 

of model-based development, data exchange and simulation 

within the context of mechatronic engineering are presented. 

In conclusion, remaining challenges are emphasized in order 

to derive potentials for advances. 

A. Model-Based Development in Mechatronic Systems 

Engineering 

While model-based development is already well-known 

within the field of software engineering [10], the topic is still 

at an initial stage within mechatronic systems engineering [3]. 

But due to the rising complexity of mechatronic systems, such 

development methods will increase in their importance over 

the next years [11]. The most important approaches are 

outlined in the following. 

Model-based development usually sets up on various 

modeling languages, which allow a consistent and abstract 

description of mechatronic systems. Examples include the 

Systems Modeling Language (SysML) [12] or 

function-oriented methods like the approach from Gehrke 

[13]. Based on these system modeling techniques, different 

metho- dologies for an integrated model-based development 

of mechatronic systems were elaborated. Eigner [6], for 

example, introduces three modeling layers in the left branch 

of the well-known V-Model from [14]: Qualitative models for 

modeling requirements or functions, quantitative models for 

an interdisciplinary simulation and discipline-specific models 

with discipline-specific engineering and simulation environ- 

ments. A similar approach was focused within the research 

project “AQUIMO” [15]. Here, an engineering tool and 

method were developed, which define the formal modeling of 

interdisciplinary development information and the belonging 

process. Another comparable approach was elaborated in the 

research project “AutoVIBN” [16]: Zaeh et al. [17] and 
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Hummel [18] developed a component-based modeling 

technique for an easy virtual commissioning. On this basis, 

Hensel [19] introduced the so-called “Vi-Model” which 

defines a systematic procedure for a model-based develop- 

ment of automation solutions. A different approach for an 

easy modeling of mechatronic systems was illustrated by 

Gausemeier et al. [20]. Their specification technique 

“CONSENS” allows an interdisciplinary description of 

mechatronic systems using eight modeling views. In addition, 

several methodologies were developed within the field of 

model-based systems engineering. Estefan [21] summarizes 

important approaches including the INCOSE object-oriented 

systems engineering method [12]. 

B. Data Exchange in Mechatronic Systems Engineering 

In order to integrate model-based approaches into current 

development processes, a collaboration between the central 

system model and discipline-specific engineering tools has to 

be enabled and established [9]. In particular, model 

transformations are needed, which transfer several contents of 

the interdisciplinary system model to tools from the 

participating engineering disciplines (i.e. mechanics, 

electronics and software). For mechanics this essentially 

means to transfer geometry and assembly information to an 

MCAD tool, for electronics it means to transfer actor/sensor 

lists and further electronic equipment to an ECAD tool [16]. 

Finally, for the software the aim of model-transformations is 

to generate prototypic code from the modeled system 

behavior [22]. This code can either be executed on a 

controller or can be refined within a development 

environment if necessary. 

To realize these transformations established data exchange 

formats can be applied. In the recent past several 

comprehensive data exchange formats were developed, which 

deal with engineering information from multiple disciplines. 

Therein, the Standard for the Exchange of Product Model 

Data (STEP) [23] is considered to be the most important one 

[24]. STEP contains physical and functional aspects, which 

can be used to map product information of the entire life cycle. 

A similar approach was introduced by Drath [5]. He 

developed the Automation Markup Language (Automation- 

ML) as an open and standardized exchange format for a 

seamless automation engineering-workflow with various and 

substitutable engineering tools. Besides these approaches, 

data exchange formats exist, which cover only a specific part 

of a mechatronic system. For example, there are data formats 

like COLLADA [25] for geometries, like VHDL [26] for 

electronic components or like PLCopen-XML [27] for 

software aspects. Finally, there are data formats that can be 

used for various contexts like the well-known eXtensible 

Markup Language (XML) [28]. XML is used for platform- 

independent data exchange and defines a syntax, which can be 

used to represent any hierarchical structured data in a textual 

form.  

C. Simulation in Mechatronic Systems Engineering 

For securing particular development decisions, simulation 

is one common approach in mechatronic systems engineering 

[29]. Along the development process, different simulation 

models are used [24], which can be classified according to 

their model granularity and scope [30]. The spectrum includes 

overall plant simulations [31] as well as simulations for 

detailed discipline-specific development tasks like the 

Finite-Element-Method (FEM) for mechanical calculations 

[32] or multibody systems (MBS) for motion analyzes [33]. 

To simplify the model building for the latter simulation 

method, recent approaches address the integration of physics 

engines [34]. These engines provide effective calculation 

methods (e.g. for collision detections) and thus decrease the 

modeling effort as physical behavior does not have to be 

defined explicitly [30]. Furthermore, comprehensive simu-

lation environments, where simulation models can consist of 

components from many engineering domains, have been 

developed and established. An example is the commercial 

tool Dymola [35] based on the Modelica modeling language 

[36], which consists of various components represented by 

differential equations, ports and connectors. 

But even comprehensive simulation environments do not 

claim to capture all relevant simulation aspects of mecha-

tronic systems at once. As a result distributed and detached 

simulation methods are currently applied throughout the 

development process [30]. This in turn often leads to 

problems while integrating discipline-specific solutions [37]. 

To overcome this situation, recent approaches address a 

coupling of different simulation environments in order to 

secure development decisions across disciplines and 

simulation tools. Examples, which allow a coupling of 

specific simulation tools, include the approach from 

Groothuis et al. [37] or from Brezina et al. [38]. Additionally, 

approaches like the Functional Mock-Up Interface [39] are 

available, which offer standards for the co-simulation of a 

large variety of simulation tools. 

D. Remaining Challenges 

The preceding sections show that various efforts have been 

made to improve development processes for mechatronic 

systems. Model-based development has great potential to 

encounter the difficult collaboration and synchronization of 

engineering disciplines in particular in early stages of 

engineering [7]. On the other hand, technical possibilities like 

standard data exchange formats or co-simulation improve 

synchronization especially in later phases. But an overall 

engineering methodology combining the advantages of both 

worlds, i.e. providing models for early stage analysis and 

design decisions while defining a clear path towards refined 

design documents and co-simulation at later stages is still 

missing. To meet this challenge, a novel integrated develop- 

ment approach is presented in the following. 

 

III. THE IMOMESA MECHATRONIC SYSTEMS ENGINEERING 

METHODOLOGY: AN OVERVIEW 

The development methodology presented in this paper 

differentiates between two phases: The conception and the 

refinement phase (see Fig. 1). The conception phase starts 

with a product idea, from which subsequently a mechatronic 

concept is derived using a dedicated systems modeling 

technique. The general purpose of the conception phase is to 

gain a shared understanding of the system under development 

among the participating engineering disciplines. Integral parts 
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of the conception phase are the modeling of requirements, the 

definition of the high-level system structure/architecture, as 

well as the formulation of the approximate system behavior. 

Furthermore, mechatronic model simulation/testing is used 

for validation and verification as well as consistency checking 

throughout the development.  

 

 
Fig. 1. Overview of the mechatronic systems engineering process [7], [9]. 

 

During refinement the mechatronic concept is elaborated 

from a mere concept to a complete virtual prototype including 

all relevant design documents required for manufacturing the 

mechatronic system. For elaboration the original modeling 

technique is extended with additional modeling concepts. At 

this point also the link to established engineering tools is 

achieved, which represents a necessary prerequisite for 

adoption of the methodology in practice. Finally, simulation 

is used again throughout development to reveal and manage 

potential problems of the system design. 

The conception phase was described in detail in [7] and [9]. 

In this paper, only the necessary foundations regarding the 

systems modeling technique and the simulation approach are 

introduced. The main focus of this paper is the refinement 

phase. Therefore, a new methodology of how mechatronic 

concepts can be elaborated systematically is presented. In 

particular, the use of discipline-specific engineering tools and 

the systems modeling technique in combination is described 

and the application of state-of-the art data exchange and 

co-simulation principles is outlined.  

 

IV. THE CONCEPTION PHASE: FROM PRODUCT IDEA TO 

MECHATRONIC CONCEPT 

Conception refers to the development of a simplified 

mechatronic system model, which can be used to describe and 

analyze requirements as well as early design decisions across 

the involved engineering disciplines. As presented in [7], [9], 

a component-based modeling technique prototypically 

implemented in the “IMoMeSA Modeller” engineering tool is 

proposed (see Fig. 2). 

 

 
Fig. 2. Development activities, editors, contents [7], [9], and simulators 

during the conception phase.  

This technique provides different views for each 

development activity. During system analysis the interface of 

the mechatronic system as well as scenarios of interaction 

between environment and system are captured. The interface 

is modeled in terms of material, energy and data ports, while 

scenarios consist of steps, actions and conditions. 

Subsequently, during system design monitors can be added to 

specify the desired system behavior. As detailed in [40], 

monitors are composed of activities, transitions and 

constraints. Then, during system implementation the system 

can be decomposed into mechatronic or discipline-specific 

components. For each component the same views can be used 

as during analysis, design and implementation creating a 

hierarchical structure of the mechatronic system. Finally, the 

implementation of atomic components (i.e. components 

without sub-components) can be defined in terms of units. For 

electronic and software components discrete-time I/O 

automata [41] can be used describing data and energy flow in 

terms of states, transitions, guards and actions. For mechanic 

components rigid parts and joints are provided. 

For validation and verification purposes the 

implementation is tested with respect to the scenarios as 

described in [7]: Each scenario is transformed into a test case. 

The test case simulates the respective scenario as well as the 

behaviors and mechanics added during implementation. In the 

meantime, the monitors are used to track the simulation and 

check for constraint violations. In case constraints are 

violated, the test case fails and the violations are reported to 

the unit testing framework. Otherwise the test case succeeds. 

Note that at this development stage physics simulation is 

intentionally limited to base geometries (e.g. spheres or boxes) 

and rigid body dynamics in order to focus on interdisciplinary 

development insights rather than detailed mechanical design. 

 

V. THE REFINEMENT PHASE: FROM MECHATRONIC 

CONCEPT TO VIRTUAL PROTOTYPE 

As described in the previous section, during conception a 

simplified model of the system is built neglecting, in 

particular, actual physical and temporal behavior. The model 

should be sufficient to validate and verify critical design 

decisions, while correctness with respect to real-world 

behavior cannot be guaranteed. To address this issue, during 

refinement modeling constructs, editors and simulators are 

added which allow to describe and analyze the mechanic, 

electric/electronic and software behavior more accurately 

(see Fig. 3). In the following, the model extensions required 

with respect to the original approach are presented, before the 

necessary editor and simulator integrations are outlined. 

Finally, a systematic development procedure on top of the 

revised modeling and simulation framework is proposed. 

A. Model Extensions 

The enhancements of the original modeling technique do 

not concern the scenarios, monitors and components views of 

the mechatronic system model. Rather a number of units are 

added. Depending on the purpose of the unit within the 

mechatronic systems engineering process a distinction 

between simulation and deployment units is proposed: As the 

name suggests, simulation units are meant for computer-based 
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simulation and testing of the mechatronic system model only. 

The simulation units include hybrid rather than the original 

discrete-time I/O automata [42], differential equations as 

known from the Modelica language [36] and custom code (e.g. 

using the Java programming language [43]). Both hybrid I/O 

automata and differential equations allow describing discrete- 

and continuous-time behavior. However, hybrid I/O automata 

need to specify the direction of data flow between 

components, while Modelica-style differential equations 

allow defining equation systems across component 

boundaries without flow direction. Note that the choice of 

modeling technique depends on the actual problem at hand. 

Finally, custom code can be used to integrate all sorts of 

simulations not supported by the other techniques. 

 

 
Fig. 3. Development activities, editors, contents and simulators during the 

refinement phase. 

 

On the other hand, deployment units actually need to be 

elaborated to manufacture and assemble the real-world 

system. The deployment units include rigid parts and joints 

already known from conception for mechanic components. 

The parts and joints are complemented by circuit diagrams for 

electric/electronic components defining their geometric 

layout as well as standard IEC 61131code [44] for example in 

Structured Text (ST) format for software components. 

B. Editor Integrations 

The major focus of this article is the integration of 

mechanical (i.e. MCAD) and electrical/electronical (i.e. 

ECAD) computer-aided design tools. For this purpose the 

tool integration strategy is shown in Fig. 4. 

 

 
Fig. 4. Integration of the “IMoMeSA Modeller “with MCAD/ECAD tools 

using model transformations. 

 

In case of MCAD an assembly descriptor [16] is generated 

from the mechatronic component hierarchy including an 

identical assembly hierarchy, joint descriptors and references 

to part descriptors. Joint descriptors define the linkage 

between parts. Part descriptors define the rigid building 

blocks of the mechanical structure and are stored in the 

COLLADA format [25]. Note that the mechatronic 

components reference the same part descriptors as the 

assembly descriptors. Consequently, modifications on parts 

are directly synchronized between the “IMoMeSA Modeller” 

and the MCAD tools. In contrast, modifications on the 

assembly hierarchy must be performed on the mechatronic 

component hierarchy inside the “IMoMeSA Modeller” and 

synchronized by means of model transformation. This policy 

has been introduced to prevent inconsistencies between the 

mechatronic component and the assembly hierarchy. 

However, in the future automated synchronization strategies 

might be used instead allowing modifications to the assembly 

hierarchy inside the MCAD tools directly. 

In case of ECAD a circuit descriptor [16] is built from the 

mechatronic component hierarchy including circuit diagram 

macros for all mechatronic, electric and electronic 

components. Note that during conception the electrical/ 

electronic design can be reduced to clamps as well as sensors 

and actuators. Clamps provide data input and electric energy 

output ports or vice versa. In contrast, sensor and actuators 

use electric energy input or output and material ports. 

However, in few cases intermediate components with only 

electric energy input and output ports might be used during 

conception as well. During refinement the ECAD tool is used 

to define the geometric layout of the components. The 

geometric layout includes the position and orientation of 

electric or electronic building blocks as well as the wire tracks. 

Similar to the MCAD case at the current stage new 

electric/electronic building blocks and logical connections 

have to be introduced in the “IMoMeSA Modeller” to ensure 

consistency. Finally, note that the behavior specification of 

electric/electronic components is not part of the 

transformation. This limitation is due to the fact that ECAD 

tools typically are concerned with the geometric circuit layout 

only, while circuit behavior is omitted. 

A minor focus of this article is the integration with PLC 

IDEs and simulation unit editors (i.e. Modelica and Code 

IDEs). Concepts for the integration between the “IMoMeSA 

Modeller” and PLC IDEs based on model transformation 

were presented previously [9]. The application of similar 

concepts for the seamless integration of simulation unit 

editors is intended in the future. For now, a manual trans- 

formation and integration step is to be assumed. 

C. Simulator Integrations 

For validation, again a simulation-based approach is 

employed reusing the scenarios and monitors, which have 

been developed during conception and need to be adapted 

potentially during refinement. Due to the increased number of 

units and their diverse simulation semantics a number of 

different simulation tools have to be integrated during 

refinement. More specifically, the state and multi-body 

simulation tools already used during conception can be 

applied again. But, these tools now are complemented by a 

SoftPLC [44] for IEC 61131 code execution as well as a 

Modelica simulator for differential equation solving [35] and 

an environment for custom code execution [45]. Optionally, 
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also a dedicated circuit simulator such as SPICE [46] can be 

employed in case the ECAD circuit descriptor format is 

supported or a trans- formation to such format exists. In case 

the circuit simulator cannot be used, I/O automata, differential 

equations or custom code can be employed instead for 

describing and simulating electric/electronic behavior. For 

simulator tool integration the Functional Mockup Interface 

(FMI) [39] is applied. 

 
Fig. 5. Systematic development procedure for the refinement phase. 

 

D. Development Procedure 

Based on the outlined model extensions and editor/ 

simulator integrations, finally a development procedure, 

which defines how to use the modeling technique during 

refinement, is presented. Basically, an incremental procedure 

is proposed, where several components are refined 

successively (see Fig. 5). Therefore, the analysis of the 

mechatronic concept is recommended as a first step. During 

this step one can browse the system model and look for 

components, which are either not deployable directly (e.g. 

because of a simplified geometry) or where automata do not 

represent the components’ behavior sufficiently in order to 

secure further development decisions. As a result, one can 

answer the question whether components exist that need to be 

refined. If so, a specific component can be selected typically 

beginning with the most critical one regarding its depen- 

dencies within the overall mechatronic system. This com- 

ponent can be refined subsequently by carrying out the 

following steps of the development procedure. 

Regardless of the component type (i.e. composite or 

atomic), usually it is necessary first to adapt the component’s 

context for the respective refinement task. This adaption may 

include an enhancement of the component’s interface or the 

modification of belonging scenarios and monitors
1

. 

Subsequently, the component itself can be refined. Therefore, 

three general refinement options can be distinguished 

depending on the component type and the complexity of the 

refinement task. If the component under consideration is 

composite already, refinement means the creation of one or 

more components within the existing sub-component 

structure and the elaboration of these components using 

simulation or deployment units. If on the other hand the 

component is atomic, one has to decide whether the particular 

refinement task is complex enough such that further 

decomposition is required. If that is the case, the respective 

 
1 Especially the interface adaption already contributes to consistency 

preservation since the enhanced interface has to be embedded appropriately 

in the overall system context resulting in refinement tasks for other 

disciplines. 
 

component has to be divided into sub-components and the 

conception units have to be re-implemented as a composition 

of these sub-components again using simulation and 

deployment units. If alternatively no decomposition is needed, 

refinement means the substitution of the conception units by a 

more detailed specification. Therefore, the original 

conception units can be transformed to the preferred 

simulation or deployment units. The transformation result can 

be used as a basis for the component elaboration. This case 

could occur, for example, if the I/O automaton of a software 

component only captures the desired behavior partially. This 

automaton can be transformed to IEC 61131 code, which then 

can be refined in a PLC IDE using so called entry points (see 

[9]). 

Once the component under consideration is elaborated 

completely, a co-simulation of the overall system can be 

performed to check for syntactic and semantic correctness 

[47]. In particular, the compilation and simulation shows 

whether new components were embedded sufficiently (i.e. 

syntactic correctness) and whether the refined mechatronic 

system model still obeys the scenarios, monitors and 

constraints (i.e. semantic correctness). If one of these aspects 

is not met, the procedure proposes an iterative process 

beginning with a revision of the context adaption. If on the 

other hand the simulation succeeds, the refinement for this 

component is completed and the incremental procedure can 

start again with the analysis of the mechatronic concept. Once 

there are no more components to be refined (i.e. all 

deployment units are elaborated), the refinement is complete 

resulting in a fully functional virtual prototype of the 

mechatronic system. 

 

VI. CONCEPTION AND REFINEMENT OF MECHATRONIC 

SYSTEMS IN PRACTICE: EXEMPLARY APPLICATION 

To demonstrate the ideas presented in the previous sections, 

three practical examples are outlined in the following (see Fig. 

6). These examples were derived from the three refinement 

options of the development procedure presented above. 

Furthermore, the examples illustrate the refinement of 
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mechatronic as well as pure mechanic, electric/electronic and 

software components.  

In case of Fig. 6(a) the geometry of a standard workpiece 

component is modified when going from the conception to the 

refinement phase. During conception the basic geometry is 

sufficient to simulate the mechanic behavior of the workpiece 

within the mechatronic system. In particular, the model 

granularity allows to rule out collisions between certain parts 

or to prove the adequacy of kinematic forces. However, 

during refinement more detailed manipulations on the surface 

of the standard workpiece need to be designed and tested. For 

this reason, the geometry of the workpiece is refined using a 

standard MCAD tool. From then on the refined geometry can 

be used in multi-body simulations instead of its coarse 

approximation. 

 

 
Fig. 6. Overview of different refinement scenarios resulting from the 

development procedure. 

 

In case of Fig. 6(b) the I/O automaton of an examination 

module is elaborated when moving to the refinement phase. 

During conception the I/O automaton is sufficient to describe 

the behavior of the examination module, i.e. examining the 

state of some workpiece found at a particular location. On a 

conceptual level modeling the state of the workpiece and its 

examination can be achieved by means of state machines and 

material ports easily. However, during refinement a solution 

has to be developed which can be deployed to a real-world 

system. In this case a camera-based solution complemented 

with a computer vision algorithm is selected. For computer- 

based testing the camera is implemented using a custom code 

simulation unit integrating Pov-RAY [48] for realistic 3D 

image rendering. The computer vision algorithm is specified 

in IEC 61131 code instead. Consequently, the algorithm can 

be tested against synthetic images in early stages while 

moving to real-world samples later. 

Finally, in case of Fig. 6(c) the sub-components of an 

automation system are extended while working on the 

refinement of the mechatronic system model. During con- 

ception only the software-based control component as well as 

mechatronic sensors and actuators are defined. This way the 

entire event chain from mechanics over electrics/electronics 

to software can be described and tested on a conceptual level. 

While this level of detail is sufficient for designing the coarse 

structure and behavior of the mechatronic system, critical 

real-world phenomena such as communication delays are not 

considered appropriately. Due to this limitation during 

refinement a Profibus [49] is added between the control and 

sensor/actuator components. This component can be used to 

describe the respective communication delays, such that the 

new phenomenon can be accounted for in control software 

design and verification. Note that the behavior of the Profibus 

can be described using, for example, I/O automata or custom 

code simulation units. Additionally, a circuit diagram 

deployment unit can be added to describe its geometric layout 

for manufacturing the mechatronic system. 

 

VII. CONCLUSION AND OUTLOOK 

In this paper a model-based engineering methodology for 

mechatronic systems leading from a product idea over a 

mechatronic concept to a complete virtual prototype was 

presented. During conception critical design decisions are 

taken to form the mechatronic concept, before elaborating a 

complete virtual prototype during refinement. For conception 

a systems modeling technique is used that is able to capture 

requirements as well as the high-level mechatronic system 

structure and the approximate behavior. Subsequently, a 

dedicated methodology for refinement was introduced, which 

extends the original modeling technique by various units for 

deployment (e.g. circuit diagrams, IEC 61131 code) and 

simulation (e.g. hybrid I/O automata, differential equations). 

Finally, the refinement was shown for three practical 

examples derived from the defined refinement options.  

The presented engineering methodology supports the 

complete development process of mechatronic systems by 

seamlessly combining interdisciplinary modeling aspects with 

discipline-specific refinement. In particular, this approach 

allows the continuous and automated evaluation of modeled 

scenarios, monitors and constraints in order to secure 

decisions and avoid mistakes across discipline borders. Since 

model transformations and editor integration are proposed as 

one essential step, a high degree of automation during the 

transition from conception to refinement can be guaranteed 

and thus the initial modeling effort can be justified by later 

savings. Finally, this approach proposes and defines the use of 

various state-of-the-art technologies (e.g. co-simulation) 

within one development procedure and thus combines their 

individual advantages for mechatronic systems engineering. 

However, it should be noted that the presented refinement 

methodology has not been implemented completely so far: 

Various state-of-the-art technologies are used, but the 

possibilities for integration within the presented approach 

have to be clarified. For this reason, only three practical 

examples could be presented for evaluation purposes while a 

complete case study is currently missing. Thus, the 

functionality of the methodology could be demonstrated only 

with restrictions. Further research tasks will address these 

drawbacks: The technical realization of the introduced model 

transformations and simulator integration is currently 

elaborated. Furthermore, the case study of an industrial-like 

stamping component will be carried out in order to evaluate 

and verify this approach within a practical development task. 
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