

Abstract—The complexity of mechatronic systems increases

constantly due to market requirements. Traditional engineering

approaches have troubles coping with the desired functionality.

A major problem is the early and continuous integration and

coordination of engineering disciplines (i.e. mechanic, electric,

and software). To address this situation and to enable a

concurrent engineering of participating disciplines, a

model-based approach to early conception and subsequent

refinement of mechatronic systems is proposed in this paper.

This approach allows specifying a high-level mechatronic

concept within a single editor and the refinement of this concept

by integrating it with established engineering tools. In

particular, the paper outlines the technical and methodical

integration of discipline-specific tools such that refinement steps

can be tested automatically and continuously. The suitability of

the approach is shown along selected examples. Finally, the

paper finishes with a reflection on the current state and an

outlook on future research activities.

Index Terms—Model-based development, concurrent

engineering, mechatronic systems engineering.

I. INTRODUCTION

The machine and plant engineering is currently facing a

large variety of challenges including shorter innovation and

production cycles [1]. Besides technological improvements,

the optimization of engineering processes is one key factor to

remain successful on the market [2]. Current engineering

processes are still characterized by serial process steps [3],

discipline-specific procedures [4] and a lack of synchro-

nization between the involved disciplines [5]. In addition, the

diversity of engineering tools that cope with discipline-

specific engineering problems impedes the establishment of

an integrated and interdisciplinary development approach [6].

A recent approach for coping with these challenges is the

model-based development of mechatronic systems [7]. This

development approach focuses the alignment of the entire

process along one central and interdisciplinary system model.

This model is constructed by engineers from all involved

disciplines in an early development phase. Thereby a common

understanding of the system to be developed can be derived

Manuscript received May 9, 2015; revised July 18, 2015. This work was

supported in part by the German Federal Ministry of Economics and

Technology (BMWi), Funding code 435 ZN.

Georg Hackenberg is with the Chair IV: Software & Systems Engineering,

Technische Universität München, 85748 Garching b. München, Germany

(e-mail: hackenbe@ in.tum.de).

Christoph Richter is with the Fraunhofer Institute for Machine Tools and

Forming Technology, 86153 Augsburg, Germany (e-mail:

christoph.richter@iwu.fraunhofer.de).

Michael F. Zaeh is with the Institute for Maschine Tools and Industrial

Management, Technische Universität München, 85748 Garching b.

München, Germany (e-mail: michael.zaeh@iwb.tum.de).

[7], mistakes can be avoided and system requirements can be

considered appropriately [8]. However, these advantages are

countered by the effort needed to build an additional model.

For this reason, model-based development is currently

applied rarely within machine and plant engineering [3].

Therefore, it is a reasonable attempt to establish the system

model during the entire development process in order to

justify the early modeling effort by savings in later phases.

This leads to the need for integrating seamlessly the system

model and established engineering tools so that engineers

from all disciplines can use the early interdisciplinary

development insights without additional efforts [9].

II. STATE OF THE ART IN MECHATRONIC SYSTEMS

ENGINEERING

In the following subsections recent approaches in the fields

of model-based development, data exchange and simulation

within the context of mechatronic engineering are presented.

In conclusion, remaining challenges are emphasized in order

to derive potentials for advances.

A. Model-Based Development in Mechatronic Systems

Engineering

While model-based development is already well-known

within the field of software engineering [10], the topic is still

at an initial stage within mechatronic systems engineering [3].

But due to the rising complexity of mechatronic systems, such

development methods will increase in their importance over

the next years [11]. The most important approaches are

outlined in the following.

Model-based development usually sets up on various

modeling languages, which allow a consistent and abstract

description of mechatronic systems. Examples include the

Systems Modeling Language (SysML) [12] or

function-oriented methods like the approach from Gehrke

[13]. Based on these system modeling techniques, different

metho- dologies for an integrated model-based development

of mechatronic systems were elaborated. Eigner [6], for

example, introduces three modeling layers in the left branch

of the well-known V-Model from [14]: Qualitative models for

modeling requirements or functions, quantitative models for

an interdisciplinary simulation and discipline-specific models

with discipline-specific engineering and simulation environ-

ments. A similar approach was focused within the research

project “AQUIMO” [15]. Here, an engineering tool and

method were developed, which define the formal modeling of

interdisciplinary development information and the belonging

process. Another comparable approach was elaborated in the

research project “AutoVIBN” [16]: Zaeh et al. [17] and

From Conception to Refinement in Mechatronics Systems

Engineering

Georg Hackenberg, Christoph Richter, and Michael F. Zaeh

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

66DOI: 10.7763/IJMMM.2016.V4.227

Hummel [18] developed a component-based modeling

technique for an easy virtual commissioning. On this basis,

Hensel [19] introduced the so-called “Vi-Model” which

defines a systematic procedure for a model-based develop-

ment of automation solutions. A different approach for an

easy modeling of mechatronic systems was illustrated by

Gausemeier et al. [20]. Their specification technique

“CONSENS” allows an interdisciplinary description of

mechatronic systems using eight modeling views. In addition,

several methodologies were developed within the field of

model-based systems engineering. Estefan [21] summarizes

important approaches including the INCOSE object-oriented

systems engineering method [12].

B. Data Exchange in Mechatronic Systems Engineering

In order to integrate model-based approaches into current

development processes, a collaboration between the central

system model and discipline-specific engineering tools has to

be enabled and established [9]. In particular, model

transformations are needed, which transfer several contents of

the interdisciplinary system model to tools from the

participating engineering disciplines (i.e. mechanics,

electronics and software). For mechanics this essentially

means to transfer geometry and assembly information to an

MCAD tool, for electronics it means to transfer actor/sensor

lists and further electronic equipment to an ECAD tool [16].

Finally, for the software the aim of model-transformations is

to generate prototypic code from the modeled system

behavior [22]. This code can either be executed on a

controller or can be refined within a development

environment if necessary.

To realize these transformations established data exchange

formats can be applied. In the recent past several

comprehensive data exchange formats were developed, which

deal with engineering information from multiple disciplines.

Therein, the Standard for the Exchange of Product Model

Data (STEP) [23] is considered to be the most important one

[24]. STEP contains physical and functional aspects, which

can be used to map product information of the entire life cycle.

A similar approach was introduced by Drath [5]. He

developed the Automation Markup Language (Automation-

ML) as an open and standardized exchange format for a

seamless automation engineering-workflow with various and

substitutable engineering tools. Besides these approaches,

data exchange formats exist, which cover only a specific part

of a mechatronic system. For example, there are data formats

like COLLADA [25] for geometries, like VHDL [26] for

electronic components or like PLCopen-XML [27] for

software aspects. Finally, there are data formats that can be

used for various contexts like the well-known eXtensible

Markup Language (XML) [28]. XML is used for platform-

independent data exchange and defines a syntax, which can be

used to represent any hierarchical structured data in a textual

form.

C. Simulation in Mechatronic Systems Engineering

For securing particular development decisions, simulation

is one common approach in mechatronic systems engineering

[29]. Along the development process, different simulation

models are used [24], which can be classified according to

their model granularity and scope [30]. The spectrum includes

overall plant simulations [31] as well as simulations for

detailed discipline-specific development tasks like the

Finite-Element-Method (FEM) for mechanical calculations

[32] or multibody systems (MBS) for motion analyzes [33].

To simplify the model building for the latter simulation

method, recent approaches address the integration of physics

engines [34]. These engines provide effective calculation

methods (e.g. for collision detections) and thus decrease the

modeling effort as physical behavior does not have to be

defined explicitly [30]. Furthermore, comprehensive simu-

lation environments, where simulation models can consist of

components from many engineering domains, have been

developed and established. An example is the commercial

tool Dymola [35] based on the Modelica modeling language

[36], which consists of various components represented by

differential equations, ports and connectors.

But even comprehensive simulation environments do not

claim to capture all relevant simulation aspects of mecha-

tronic systems at once. As a result distributed and detached

simulation methods are currently applied throughout the

development process [30]. This in turn often leads to

problems while integrating discipline-specific solutions [37].

To overcome this situation, recent approaches address a

coupling of different simulation environments in order to

secure development decisions across disciplines and

simulation tools. Examples, which allow a coupling of

specific simulation tools, include the approach from

Groothuis et al. [37] or from Brezina et al. [38]. Additionally,

approaches like the Functional Mock-Up Interface [39] are

available, which offer standards for the co-simulation of a

large variety of simulation tools.

D. Remaining Challenges

The preceding sections show that various efforts have been

made to improve development processes for mechatronic

systems. Model-based development has great potential to

encounter the difficult collaboration and synchronization of

engineering disciplines in particular in early stages of

engineering [7]. On the other hand, technical possibilities like

standard data exchange formats or co-simulation improve

synchronization especially in later phases. But an overall

engineering methodology combining the advantages of both

worlds, i.e. providing models for early stage analysis and

design decisions while defining a clear path towards refined

design documents and co-simulation at later stages is still

missing. To meet this challenge, a novel integrated develop-

ment approach is presented in the following.

III. THE IMOMESA MECHATRONIC SYSTEMS ENGINEERING

METHODOLOGY: AN OVERVIEW

The development methodology presented in this paper

differentiates between two phases: The conception and the

refinement phase (see Fig. 1). The conception phase starts

with a product idea, from which subsequently a mechatronic

concept is derived using a dedicated systems modeling

technique. The general purpose of the conception phase is to

gain a shared understanding of the system under development

among the participating engineering disciplines. Integral parts

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

67

of the conception phase are the modeling of requirements, the

definition of the high-level system structure/architecture, as

well as the formulation of the approximate system behavior.

Furthermore, mechatronic model simulation/testing is used

for validation and verification as well as consistency checking

throughout the development.

Fig. 1. Overview of the mechatronic systems engineering process [7], [9].

During refinement the mechatronic concept is elaborated

from a mere concept to a complete virtual prototype including

all relevant design documents required for manufacturing the

mechatronic system. For elaboration the original modeling

technique is extended with additional modeling concepts. At

this point also the link to established engineering tools is

achieved, which represents a necessary prerequisite for

adoption of the methodology in practice. Finally, simulation

is used again throughout development to reveal and manage

potential problems of the system design.

The conception phase was described in detail in [7] and [9].

In this paper, only the necessary foundations regarding the

systems modeling technique and the simulation approach are

introduced. The main focus of this paper is the refinement

phase. Therefore, a new methodology of how mechatronic

concepts can be elaborated systematically is presented. In

particular, the use of discipline-specific engineering tools and

the systems modeling technique in combination is described

and the application of state-of-the art data exchange and

co-simulation principles is outlined.

IV. THE CONCEPTION PHASE: FROM PRODUCT IDEA TO

MECHATRONIC CONCEPT

Conception refers to the development of a simplified

mechatronic system model, which can be used to describe and

analyze requirements as well as early design decisions across

the involved engineering disciplines. As presented in [7], [9],

a component-based modeling technique prototypically

implemented in the “IMoMeSA Modeller” engineering tool is

proposed (see Fig. 2).

Fig. 2. Development activities, editors, contents [7], [9], and simulators

during the conception phase.

This technique provides different views for each

development activity. During system analysis the interface of

the mechatronic system as well as scenarios of interaction

between environment and system are captured. The interface

is modeled in terms of material, energy and data ports, while

scenarios consist of steps, actions and conditions.

Subsequently, during system design monitors can be added to

specify the desired system behavior. As detailed in [40],

monitors are composed of activities, transitions and

constraints. Then, during system implementation the system

can be decomposed into mechatronic or discipline-specific

components. For each component the same views can be used

as during analysis, design and implementation creating a

hierarchical structure of the mechatronic system. Finally, the

implementation of atomic components (i.e. components

without sub-components) can be defined in terms of units. For

electronic and software components discrete-time I/O

automata [41] can be used describing data and energy flow in

terms of states, transitions, guards and actions. For mechanic

components rigid parts and joints are provided.

For validation and verification purposes the

implementation is tested with respect to the scenarios as

described in [7]: Each scenario is transformed into a test case.

The test case simulates the respective scenario as well as the

behaviors and mechanics added during implementation. In the

meantime, the monitors are used to track the simulation and

check for constraint violations. In case constraints are

violated, the test case fails and the violations are reported to

the unit testing framework. Otherwise the test case succeeds.

Note that at this development stage physics simulation is

intentionally limited to base geometries (e.g. spheres or boxes)

and rigid body dynamics in order to focus on interdisciplinary

development insights rather than detailed mechanical design.

V. THE REFINEMENT PHASE: FROM MECHATRONIC

CONCEPT TO VIRTUAL PROTOTYPE

As described in the previous section, during conception a

simplified model of the system is built neglecting, in

particular, actual physical and temporal behavior. The model

should be sufficient to validate and verify critical design

decisions, while correctness with respect to real-world

behavior cannot be guaranteed. To address this issue, during

refinement modeling constructs, editors and simulators are

added which allow to describe and analyze the mechanic,

electric/electronic and software behavior more accurately

(see Fig. 3). In the following, the model extensions required

with respect to the original approach are presented, before the

necessary editor and simulator integrations are outlined.

Finally, a systematic development procedure on top of the

revised modeling and simulation framework is proposed.

A. Model Extensions

The enhancements of the original modeling technique do

not concern the scenarios, monitors and components views of

the mechatronic system model. Rather a number of units are

added. Depending on the purpose of the unit within the

mechatronic systems engineering process a distinction

between simulation and deployment units is proposed: As the

name suggests, simulation units are meant for computer-based

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

68

simulation and testing of the mechatronic system model only.

The simulation units include hybrid rather than the original

discrete-time I/O automata [42], differential equations as

known from the Modelica language [36] and custom code (e.g.

using the Java programming language [43]). Both hybrid I/O

automata and differential equations allow describing discrete-

and continuous-time behavior. However, hybrid I/O automata

need to specify the direction of data flow between

components, while Modelica-style differential equations

allow defining equation systems across component

boundaries without flow direction. Note that the choice of

modeling technique depends on the actual problem at hand.

Finally, custom code can be used to integrate all sorts of

simulations not supported by the other techniques.

Fig. 3. Development activities, editors, contents and simulators during the

refinement phase.

On the other hand, deployment units actually need to be

elaborated to manufacture and assemble the real-world

system. The deployment units include rigid parts and joints

already known from conception for mechanic components.

The parts and joints are complemented by circuit diagrams for

electric/electronic components defining their geometric

layout as well as standard IEC 61131code [44] for example in

Structured Text (ST) format for software components.

B. Editor Integrations

The major focus of this article is the integration of

mechanical (i.e. MCAD) and electrical/electronical (i.e.

ECAD) computer-aided design tools. For this purpose the

tool integration strategy is shown in Fig. 4.

Fig. 4. Integration of the “IMoMeSA Modeller “with MCAD/ECAD tools

using model transformations.

In case of MCAD an assembly descriptor [16] is generated

from the mechatronic component hierarchy including an

identical assembly hierarchy, joint descriptors and references

to part descriptors. Joint descriptors define the linkage

between parts. Part descriptors define the rigid building

blocks of the mechanical structure and are stored in the

COLLADA format [25]. Note that the mechatronic

components reference the same part descriptors as the

assembly descriptors. Consequently, modifications on parts

are directly synchronized between the “IMoMeSA Modeller”

and the MCAD tools. In contrast, modifications on the

assembly hierarchy must be performed on the mechatronic

component hierarchy inside the “IMoMeSA Modeller” and

synchronized by means of model transformation. This policy

has been introduced to prevent inconsistencies between the

mechatronic component and the assembly hierarchy.

However, in the future automated synchronization strategies

might be used instead allowing modifications to the assembly

hierarchy inside the MCAD tools directly.

In case of ECAD a circuit descriptor [16] is built from the

mechatronic component hierarchy including circuit diagram

macros for all mechatronic, electric and electronic

components. Note that during conception the electrical/

electronic design can be reduced to clamps as well as sensors

and actuators. Clamps provide data input and electric energy

output ports or vice versa. In contrast, sensor and actuators

use electric energy input or output and material ports.

However, in few cases intermediate components with only

electric energy input and output ports might be used during

conception as well. During refinement the ECAD tool is used

to define the geometric layout of the components. The

geometric layout includes the position and orientation of

electric or electronic building blocks as well as the wire tracks.

Similar to the MCAD case at the current stage new

electric/electronic building blocks and logical connections

have to be introduced in the “IMoMeSA Modeller” to ensure

consistency. Finally, note that the behavior specification of

electric/electronic components is not part of the

transformation. This limitation is due to the fact that ECAD

tools typically are concerned with the geometric circuit layout

only, while circuit behavior is omitted.

A minor focus of this article is the integration with PLC

IDEs and simulation unit editors (i.e. Modelica and Code

IDEs). Concepts for the integration between the “IMoMeSA

Modeller” and PLC IDEs based on model transformation

were presented previously [9]. The application of similar

concepts for the seamless integration of simulation unit

editors is intended in the future. For now, a manual trans-

formation and integration step is to be assumed.

C. Simulator Integrations

For validation, again a simulation-based approach is

employed reusing the scenarios and monitors, which have

been developed during conception and need to be adapted

potentially during refinement. Due to the increased number of

units and their diverse simulation semantics a number of

different simulation tools have to be integrated during

refinement. More specifically, the state and multi-body

simulation tools already used during conception can be

applied again. But, these tools now are complemented by a

SoftPLC [44] for IEC 61131 code execution as well as a

Modelica simulator for differential equation solving [35] and

an environment for custom code execution [45]. Optionally,

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

69

also a dedicated circuit simulator such as SPICE [46] can be

employed in case the ECAD circuit descriptor format is

supported or a trans- formation to such format exists. In case

the circuit simulator cannot be used, I/O automata, differential

equations or custom code can be employed instead for

describing and simulating electric/electronic behavior. For

simulator tool integration the Functional Mockup Interface

(FMI) [39] is applied.

Fig. 5. Systematic development procedure for the refinement phase.

D. Development Procedure

Based on the outlined model extensions and editor/

simulator integrations, finally a development procedure,

which defines how to use the modeling technique during

refinement, is presented. Basically, an incremental procedure

is proposed, where several components are refined

successively (see Fig. 5). Therefore, the analysis of the

mechatronic concept is recommended as a first step. During

this step one can browse the system model and look for

components, which are either not deployable directly (e.g.

because of a simplified geometry) or where automata do not

represent the components’ behavior sufficiently in order to

secure further development decisions. As a result, one can

answer the question whether components exist that need to be

refined. If so, a specific component can be selected typically

beginning with the most critical one regarding its depen-

dencies within the overall mechatronic system. This com-

ponent can be refined subsequently by carrying out the

following steps of the development procedure.

Regardless of the component type (i.e. composite or

atomic), usually it is necessary first to adapt the component’s

context for the respective refinement task. This adaption may

include an enhancement of the component’s interface or the

modification of belonging scenarios and monitors
1

.

Subsequently, the component itself can be refined. Therefore,

three general refinement options can be distinguished

depending on the component type and the complexity of the

refinement task. If the component under consideration is

composite already, refinement means the creation of one or

more components within the existing sub-component

structure and the elaboration of these components using

simulation or deployment units. If on the other hand the

component is atomic, one has to decide whether the particular

refinement task is complex enough such that further

decomposition is required. If that is the case, the respective

1 Especially the interface adaption already contributes to consistency

preservation since the enhanced interface has to be embedded appropriately

in the overall system context resulting in refinement tasks for other

disciplines.

component has to be divided into sub-components and the

conception units have to be re-implemented as a composition

of these sub-components again using simulation and

deployment units. If alternatively no decomposition is needed,

refinement means the substitution of the conception units by a

more detailed specification. Therefore, the original

conception units can be transformed to the preferred

simulation or deployment units. The transformation result can

be used as a basis for the component elaboration. This case

could occur, for example, if the I/O automaton of a software

component only captures the desired behavior partially. This

automaton can be transformed to IEC 61131 code, which then

can be refined in a PLC IDE using so called entry points (see

[9]).

Once the component under consideration is elaborated

completely, a co-simulation of the overall system can be

performed to check for syntactic and semantic correctness

[47]. In particular, the compilation and simulation shows

whether new components were embedded sufficiently (i.e.

syntactic correctness) and whether the refined mechatronic

system model still obeys the scenarios, monitors and

constraints (i.e. semantic correctness). If one of these aspects

is not met, the procedure proposes an iterative process

beginning with a revision of the context adaption. If on the

other hand the simulation succeeds, the refinement for this

component is completed and the incremental procedure can

start again with the analysis of the mechatronic concept. Once

there are no more components to be refined (i.e. all

deployment units are elaborated), the refinement is complete

resulting in a fully functional virtual prototype of the

mechatronic system.

VI. CONCEPTION AND REFINEMENT OF MECHATRONIC

SYSTEMS IN PRACTICE: EXEMPLARY APPLICATION

To demonstrate the ideas presented in the previous sections,

three practical examples are outlined in the following (see Fig.

6). These examples were derived from the three refinement

options of the development procedure presented above.

Furthermore, the examples illustrate the refinement of

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

70

mechatronic as well as pure mechanic, electric/electronic and

software components.

In case of Fig. 6(a) the geometry of a standard workpiece

component is modified when going from the conception to the

refinement phase. During conception the basic geometry is

sufficient to simulate the mechanic behavior of the workpiece

within the mechatronic system. In particular, the model

granularity allows to rule out collisions between certain parts

or to prove the adequacy of kinematic forces. However,

during refinement more detailed manipulations on the surface

of the standard workpiece need to be designed and tested. For

this reason, the geometry of the workpiece is refined using a

standard MCAD tool. From then on the refined geometry can

be used in multi-body simulations instead of its coarse

approximation.

Fig. 6. Overview of different refinement scenarios resulting from the

development procedure.

In case of Fig. 6(b) the I/O automaton of an examination

module is elaborated when moving to the refinement phase.

During conception the I/O automaton is sufficient to describe

the behavior of the examination module, i.e. examining the

state of some workpiece found at a particular location. On a

conceptual level modeling the state of the workpiece and its

examination can be achieved by means of state machines and

material ports easily. However, during refinement a solution

has to be developed which can be deployed to a real-world

system. In this case a camera-based solution complemented

with a computer vision algorithm is selected. For computer-

based testing the camera is implemented using a custom code

simulation unit integrating Pov-RAY [48] for realistic 3D

image rendering. The computer vision algorithm is specified

in IEC 61131 code instead. Consequently, the algorithm can

be tested against synthetic images in early stages while

moving to real-world samples later.

Finally, in case of Fig. 6(c) the sub-components of an

automation system are extended while working on the

refinement of the mechatronic system model. During con-

ception only the software-based control component as well as

mechatronic sensors and actuators are defined. This way the

entire event chain from mechanics over electrics/electronics

to software can be described and tested on a conceptual level.

While this level of detail is sufficient for designing the coarse

structure and behavior of the mechatronic system, critical

real-world phenomena such as communication delays are not

considered appropriately. Due to this limitation during

refinement a Profibus [49] is added between the control and

sensor/actuator components. This component can be used to

describe the respective communication delays, such that the

new phenomenon can be accounted for in control software

design and verification. Note that the behavior of the Profibus

can be described using, for example, I/O automata or custom

code simulation units. Additionally, a circuit diagram

deployment unit can be added to describe its geometric layout

for manufacturing the mechatronic system.

VII. CONCLUSION AND OUTLOOK

In this paper a model-based engineering methodology for

mechatronic systems leading from a product idea over a

mechatronic concept to a complete virtual prototype was

presented. During conception critical design decisions are

taken to form the mechatronic concept, before elaborating a

complete virtual prototype during refinement. For conception

a systems modeling technique is used that is able to capture

requirements as well as the high-level mechatronic system

structure and the approximate behavior. Subsequently, a

dedicated methodology for refinement was introduced, which

extends the original modeling technique by various units for

deployment (e.g. circuit diagrams, IEC 61131 code) and

simulation (e.g. hybrid I/O automata, differential equations).

Finally, the refinement was shown for three practical

examples derived from the defined refinement options.

The presented engineering methodology supports the

complete development process of mechatronic systems by

seamlessly combining interdisciplinary modeling aspects with

discipline-specific refinement. In particular, this approach

allows the continuous and automated evaluation of modeled

scenarios, monitors and constraints in order to secure

decisions and avoid mistakes across discipline borders. Since

model transformations and editor integration are proposed as

one essential step, a high degree of automation during the

transition from conception to refinement can be guaranteed

and thus the initial modeling effort can be justified by later

savings. Finally, this approach proposes and defines the use of

various state-of-the-art technologies (e.g. co-simulation)

within one development procedure and thus combines their

individual advantages for mechatronic systems engineering.

However, it should be noted that the presented refinement

methodology has not been implemented completely so far:

Various state-of-the-art technologies are used, but the

possibilities for integration within the presented approach

have to be clarified. For this reason, only three practical

examples could be presented for evaluation purposes while a

complete case study is currently missing. Thus, the

functionality of the methodology could be demonstrated only

with restrictions. Further research tasks will address these

drawbacks: The technical realization of the introduced model

transformations and simulator integration is currently

elaborated. Furthermore, the case study of an industrial-like

stamping component will be carried out in order to evaluate

and verify this approach within a practical development task.

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

71

REFERENCES

[1] M. Garetti and M. Taisc, “Sustainable manufacturing: Trends and

research challenges,” Production and Control, vol. 23, pp. 83-104,

2012,

[2] K. Clark and S. Wheelwright, Managing New Product and Process

Development: Text Cases, the Free Press, 1993.

[3] J. Gausemeier, R. Dumitrescu, and D. Steffen, “Systems engineering in

der industriellen praxis,” Heinz-Nixdorf-Institut and the Fraunhofer

IPT — Projektgruppe Entwurfstechnik Mechatronik, 2013.

[4] W. Dohmen, “Interdisziplinäre Methoden für die integrierte

Entwicklung komplexer mechatronischer Systeme,” Ph.D. dissertation,

Technical University of Munich, 2002.

[5] H. Diehl, “Systemorientierte Visualisierung disziplinübergreifender

Entwicklungsabhängigkeiten mechatronischer automobilsysteme,”

Ph.D. dissertation, Technical University of Munich, 2009.

[6] R. Drath, A. Luder, J. Peschke, and L. Hundt, “AutomationML — the

glue for seamless automation engineering,” in Proc. IEEE

International Conference on Emerging Technologies and Factory

Automation, Hamburg, 2008.

[7] M. Eigner, “Modellbasierte virtuelle produktentwicklung auf einer

plattform für system lifecycle management,” in Industrie 4.0 —

Beherrschung der industriellen Komplexität mit SysLM, U. Sendler,

Ed. Springer, 2013, pp. 91-110.

[8] G. Hackenberg, C. Richter, and M. F. Zäh, “A multi-disciplinary

modeling technique for requirements management in mechatronic

systems engineering,” in Proc. the 2nd Joint Internal Conference on

System-Integrated Intelligence: New Challenges for Product and

Production Engineering, Bremen, 2014, pp. 5-16

[9] C. Richter, G. Hackenberg, and M. F. Zäh, “Interdisziplinäre

Funktionsmodellierung für die Generierung von robustem

Steuerungscode für fehlertolerantes Systemverhalten,” in Proc.

Industry meeting of Measurement and Automatic Control, 2014.

[10] T. Stahl and M. Völter, Model-Driven Software Development,

John-Wiley & Sons Ltd., 2006.

[11] T. Weilkiens, “Zukunftsdisziplin Modellbasiertes Systems

Engineering,” in Proc. Paderborner Workshop — Design of

mechatronic systems, 2011, p. 8.

[12] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML

— The Systems Modeling Language, Morgan Kaufmann, 2012

[13] M. Gehrke, “Entwurf mechatronischer systeme auf basis von

funktionshierarchien und systemstrukturen,” Ph.D. dissertation,

University of Paderborn, 2005.

[14] VDI, Entwicklungsmethodik Für Mechatronische Systeme, Verein

Deutscher Ingenieure, Beuth-Verlag, 2004.

[15] M. Litto, “AQUIMO — Ein Leitfaden für maschinen- und

anlagenbauer,” Verein Deutscher Maschinen — und Anlagenbau,

VDMA-Verlag, 2010.

[16] J. Botaschanjan, T. Hensel, B. Hummel, and A. Lindworsky,

“AutoVIBN: Automatische Generierung von Verhaltensmodellen für

die qualitätsorientierte Virtuelle Intbetriebnahme,” Technical Report

TUM-I1012, Technische Univsersität München (Abschlussbericht —

AiF-Forschungsvorhaben ZN 279), 2010.

[17] M. F. Zaeh and A. Lindworsky, “Automatic model generation for

virtual commissioning,” in Proc. the International Conference on

Competitive Manufacturing, Paris, 2010, pp. 27-32.

[18] B. Hummel, “Integrated begavior modeling of space-intensive

mechatronic systems,” Ph.D. dissertation, Technical University of

Munich, 2011.

[19] T. Hensel, “Modellbasierter Entwicklungsprozess für Automati-

sierungs-lösungen,” Ph.D. dissertation, Technical University of

Munich, 2011.

[20] J. Gausemeier, U. Frank, J. Donoth, and S. Kahl, “Specification

technique for the description of self-optimizing mechatronic systems,”

Research in Engineering Design, vol. 20, pp. 201-223, 2009.

[21] J. Estefan, Survey of Model-Based Systems Engineering (MBSE)

Methodologies, INCOSE MBSE Focus Group 25, 2008.

[22] K. Czarnecki and S. Helsen, “Classification of model transformation

approaches,” in Proc. the 2nd OOPSLA Workshop on Generative

Techniques in the Context of the Model Driven Architecture, 2003,

Anaheim, CA, USA.

[23] M. J. Pratt, “Introduction to ISO 10303 — The STEP standard for

product data exchange,” Journal of Computing and Information

Science in Engineering, vol. 1, no. 1, pp. 102-103, 2001.

[24] U. Bracht, S. Wenzel, and D. Geckler, Digitale Fabrik: Methoden und

Praxisbeispiele, VDI-Buch, Springer, 2009.

[25] R. Arnaud and M. C. Barnes, COLLADA: Sailing the Gulf of 3D

Digital Content Creation, Wellesley, AK Peters, 2006.

[26] P. J. Ashenden, The Designer’s Guide to VHDL, Morgan Kaufmann,

2010.

[27] M. Marcos, E. Estevez, F. Perez, and E. van der Wal, “XML exchange

of control programs,” Industrial Electronics Magazine, vol. 3, no. 4,

pp. 32-35, 2009.

[28] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.

(2006). Extensible markup language (XML). World Wide Web

Consortium Recommendation. [Online]. Available:

http://www.w3.org/TR/xml11/>

[29] R. Sinha, V. C. Liang, C. J. J. Paredis, and P. K. Khosla, “Modeling

and simulation methods for design of engineering systems,” Journal of

Computing and Information Science in Engineering, vol. 1, no. 1, pp.

84-91, 2001.

[30] P. Stich and G. Reinhart, “Mechatronic sketching of manufacturing

systems using physically based models,” in Proc. IEEE Symposium on

Industrial Electronics and Applications (ISIEA), Kuching, September

2013, pp. 1-6.

[31] S. Völker and P. M. Schmidt, “Simulationsbasierte Optimierung von

Produktions- und Logistiksystemen mit Tecnomatix Plant

Simulation,” in Integrationsaspekte der Simulation: Technik,

Organisation und Personal, G. Zülch and P. Stock, Eds. KIT SCI

Publication, 2010.

[32] S. Röck and G. Pritschow, “Real-time capable finite element models

with closed-loop control — A method for Hardware-in-the-Loop

simulation of flexible systems,” Production Engineering-Research &

Development, vol. 1, no. 1, pp. 37-43, 2007.

[33] G. Reinhart and M. Weissenberger, “Multibody simulation of machine

tools as mechatronic systems for optimization of motion dynamics in

the design process,” in Proc. IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, Atlanta, GA, USA, 1999, pp.

605-610.

[34] G. Reinhart and F. F. Lacour, “Physically based virtual commissioning

of material flow intensive manufacturing plants,” in Proc. 3rd

International Conference on Changeable, Agile, Reconfigurable and

Virtual Production, 2009, pp. 377-387.

[35] Dymola. (2014). [Online]. Available:

http://www.modelon.com/products/dymola/

[36] P. Fritzson, Principles of Object-Oriented Modeling and Simulation

with Modelica 2.1, John Wiley & Sons, 2010.

[37] M. A. Groothuis, A. S. Damstra, and J. F. Broenink, “Virtual

prototyping through co-simulation of a Cartesian plotter,” in Proc.

IEEE International Conference on Emerging Technologies and

Factory Automation, 2008, pp. 697-700.

[38] T. Brezina, Z. Hadas, and J. Vetiska, “Using of co-simulation

ADAMS-SIMULINK for development of mechatronic systems,” in

Proc. 14th International Symposium on Mechatronika, IEEE, 2011, pp.

59-64.

[39] T. Blochwicz, M. Otter, J. Akesson, M. Arnold, C. Clauß, H. Elmquist,

M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A.

Viel, “Functional mockup interface 2.0: The standard for Tool

independent exchange of simulation models,” in Proc. 9th

International Modelica Conference, 2012.

[40] G. Hackenberg, A. Campetelli, C. Legat, J. Mund, S. Teufl, and B.

Vogel-Heuser, “Formal technical process specification and verification

for automated production systems,” in Proc. the 8th International

Conference on System Analysis and Modeling, 2014.

[41] N. A. Lynch and M. R. Tuttle, “An introduction to input/output

automata,” Technical Report MIT/LCS/TM-373, MIT Laboratory for

Computer Science, 1988.

[42] N. A. Lynch, R. Segala, and F. Vaandrager, “Hybrid i/o automata,”

Information and Computation, vol. 185, no. 1, pp. 105-157, 2003.

[43] K. Arnold, J. Gosling, and D. Holmes, The Java Programming

Language, Reading: Addison-Wesley, vol. 2, 1996.

[44] H. Lepers, SPS-Programmierung Nach IEC 61131-3, Franzis Verlag,

2005.

[45] B. Venners, Inside the Java Virtual Machine, McGraw-Hill Inc., 1996.

[46] S. M. Sandler and C. E. Hymowitz, SPICE Circuit Handbook,

McGraw-Hill Professional, 2006.

[47] M. Broy and K. Stølen, Specification and Development of Interactive

Systems: Focus on Streams, Interfaces, and Refinement, Springer,

2001.

[48] Persistence of Vision Raytracer. (2004). [Online]. Available:

http://www.povray.org/

[49] E. Tovar and F. Vasques, “Real-time fieldbus communications using

Profibus networks,” IEEE Transactions on Industrial Electronics, vol.

46, issue 6, pp. 1241-1251, August 2002.

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

72

Georg Hackenberg was born in Füssen, Germany on

August 18, 1983. He holds a bachelor of science

degree in software and internet technology from

University of Mannheim, Mannheim, Germany, in

2007 and a master of science degree in software

systems engineering from RWTH Aachen University,

Aachen, Germany, 2010.

From 2004 to 2006, he worked as a student assistant

at the Database Group, University of Mannheim,

Mannheim, Germany. From 2006 to 2007, Georg worked as a trainee at the

Integrated Data Systems Group, Siemens Corporate Research, Princeton,

USA. From 2008 to 2009, he worked as a student assistant at the Chair for

Information Systems, RWTH Aachen University, Aachen, Germany. From

2009 to 2010, he worked as a student assistant at the Cooperation Systems

Group and as a researcher at the Risk Management and Decision Support

Group, Fraunhofer Institute for Applied Information Systems FIT, Sankt

Augustin, Germany. From 2011 onwards, Georg works as a researcher

assistant at the Chair for Software and Systems Engineering, Technische

Universität München, Garching, Germany. His current research interests

include model-based development of manufacturing and energy systems as

well as large-scale discrete-time optimal control.

Mr. Hackenberg is a student member at the Institute of Electrical and

Electronics Engineers (IEEE). In 2011 he won the Hugo Geiger Price for an

outstanding Master thesis at the Cooperation Systems Group, Fraunhofer

Institute for Applied Information Systems FIT, Sankt Augustin, Germany. In

2012 he earned a Software Campus Fellowship for his research on

model-based development of smart energy systems.

Christoph Richter was born in Bamberg, Germany

on September 12, 1986. He holds a mechanical

engineering diploma from Technische Universität

München, Garching, Germany, 2012.

During his studies from 2006 to 2012 he

temporarily worked as a student assistant at the Chair

of Automatic Control and the Chair of Thermodyna-

mics at the Department of Mechanical Engineering,

Technische Universität München, Garching,

Germany. From 2010 to 2012, he worked as a student trainee at the ITQ

GmbH, Garching, Germany. After finishing his studies in 2012, he worked

as a research assistant at the Institute for Machine Tools, Technische

Universität München, Garching, Germany. His main research focus was on

the model-based development of mechatronic systems. Since January 2015,

he works as a research assistant at the Fraunhofer Institute for Machine Tools

and Forming Technology, Augsburg, Germany, where he concentrates his

research activities on the model-based development of user interfaces in the

field of mechanical engineering.

Michael F. Zaeh was born in Coburg, Germany on

December 11, 1963. He is a full-time professor for

machine tools and manufacturing technology at the

Department of Mechanical Engineering, Technische

Universität München, Garching, Germany.

After his studies in mechanical engineering at

Technische Universität München from 1984-1989,

he assumed a position as a graduate research assistant

at the Institute of Machine Tools and Industrial

Management of Technische Universität München (iwb). He received his

doctorate degree in 1993 with a thesis about a dynamic process model for

circular sawing. Form 1994 to 1995, he had been the head of a department

under the new director of the institute, Prof. Dr. Gunther Reinhart. In 1996

Michael Zaeh joined Gleason-Pfauter Maschinenfabrik GmbH, a builder of

machine tools for manufacturing of gears, where he worked in the research

laboratory and in the design department during the first year. Later he was

promoted head of the order management department. Since 1997 he was a

member of the management group. From 1998 to 2002, he worked in an

ERP-System-Implementation Project at several production sites and sales

agencies of the Gleason Corporation. During that time he stayed in

Rochester, N.Y., USA, for two years and he worked also in South Korea,

Great Britain, Brazil and Japan. In the year of 2002 he accepted the position

of full-time professor for machine tools and manufacturing technology at

Technische Universität München, Garching, Germany.

Prof. Dr. Michael Zaeh is a member of ACATECH, the German academy

of technical science, of the WGP (German Scientific Society for Production

Technology), of the WLT (Scientific Society of Laser Technology) as well as

of several other institutions. He also holds an associated membership at

CIRP. Suggested by professor Dr. Joachim Milberg the Diploma Thesis of

Prof. Dr. Zaeh was awarded the student prize of the VDW, the German

machine tool builders’ association.

International Journal of Materials, Mechanics and Manufacturing, Vol. 4, No. 1, February 2016

73

