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Abstract—A bi-material element composed of two plates 

bonded by an interface and subjected to monotonically 

increasing loading is considered. The cohesive zone model is 

assumed to simulate the interface response in shear. The coating 

layer response is characterized by the critical failure stress. The 

layer cracking modes are analyzed by applying the shear lag 

approach. The analytical solution illustrates the effect of 

strength on cracking of the coating layer. 

 

Index Terms—Fragmentation, cohesive zone model, shear lag 

model, mechanical loading.  

 

I. INTRODUCTION 

The damage of layers or coatings on the substrate are one of 

the most important problem occurring in this type of 

composite materials. In most cases the delamination and 

cracking are the dominant modes of degradation of materials 

performances. Although the coatings are usually designed to 

improve surface tribological properties it should be noted that 

deposition technique can also induce the negative aspects of 

the strength of the material, especially exhibited during cyclic 

loading [1]. Much effort has been invested over the last years 

to research in this area. However, the mechanical models are 

often complicated and not able to fully explain the failure 

mechanisms. Recently, the concept of cohesive zones 

assumed ahead of crack tip has been applied, cf. Białas and 

Mróz [2], [3], becoming a powerful analytical tool in the 

nonlinear fracture analysis of progressive delamination and 

cracking of thin layer bonded to a rigid or elastic substrate and 

subjected to thermal loading. Similar boundary conditions 

were considered by Nikolova et al. [4]. In the last decades the 

shear lag approach is one of the most used tools in mechanics 

of composite materials, where stress transfer occurs via an 

interfacial shear stress. This idea was introduced by Cox [5] 

as a simple one-dimensional equation for analysing stress 

transfer between a fiber and matrix assuming a fully elastic 

interface, and by Kelly and Tyson [6] for a fully plastic 

interface. The main idea of the shear-lag analysis is an 

decouples the 2D plane problem into two 1D ones. Hedgepeth 

[7] was the first who applied shear-lag model to unidirectional 

composites. Recently, the bi-material structure consisting of 

two elastic isotropic plates bonded together subject to 

mechanical tension was studied by Ivanova et al. [8]. The 

phenomenological model describing cracking under uniaxial 

tensile strain of brittle thin film on a deformable substrate with 

an elastic-plastic interface layer was considered by McGuigan 
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et al. [9]. They presented the analytical solution predicting 

averaged crack density as a function of applied strain and 

materials parameters and showed good correlation with 

experimental data. 
 

 
a)                                               b) 

 
c) 

Fig. 1. a) Composites loading by displacement b) Substrate loading c) Stress 

acting on an infinitesimal bi-layer element. 

 

II. PROBLEM FORMULATION 

Consider a plate of length 2L and two plates A and B of 

different materials and thicknesses, 2hA; 2hB, respectively. 

The plates are bonded together along the interface I and 

mechanical loaded in the monotonic way. It is assumed that 

the layers and interface are of isotropic materials, the bending 

effects are neglected and the axial stresses and strains are 

uniform over the cross sections of the plates. The both 

components of the consider composite are working only on 

tension-pressure, while the interface works on the shear, only. 

The main interest of this study is to determine the damage 

response of the consider structure to the different monotonic 

mechanical loading and compare it with the possible design 

variables. 

The following differential equations (Fig. 1) of plate 

equilibrium can be formulated 

,
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III. CONSTITUTIVE MODELS 

The simplified constitutive law for the interface layer and 

the coatings is assumed as shown in Fig. 2. The substrate is 

assumed to be full elastic. The presented law is divided into 

two parts. The first one is the elastic part, and the second one 

can be considered in various ways for the material behaviours: 

 brittle behavior, 

 plastic weakness, 

 ductile behavior. 
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assumption which involves in-plane shear stress τxy and 
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For the elastic part we have the interface response as 

follows 
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loading when the stress in the coating reaches its maximum 

critical value Cr

A  the three different behavior can occur in 

Fig. 2b). In the article the elastic-brittle situation is only 

assumed, when the fracture process begins immediately after 

the tension strength is attained. 

 

IV. SUBSTRATE LOADING 

Let’s consider the bi-layer with two alternative monotonic 

loading conditions, namely the tensile displacement u0 or the 

stress 
0  acting on the border of the element in Fig. 3a). 

In the elastic case with non-dimensional variables the 

following forms can be assumed 
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( ) for stress boundarycondition,

( ) for displacement boundarycondition.
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Then Eq. (1) becomes: 

1 1
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Subsequently, the Eq. (6) can be expressed in the following 

form 
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Simultaneously, the following equations can be formulated 
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Fig. 3. a) The bi-layer mechanical loading. b) Fragmentation process. 

 

TABLE I: THE EXPRESSION FOR ELASTIC STRESS, STRAIN AND 

DISPLACEMENTS IN DIMENSIONLESS PARAMETERS FOR SUBSTRATE LOADING 

AND NOT CRACKED LAYER A 
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Fig. 2. The interface and the coating models a), b) respectively.

Here the elastic shear modulus is denoted by Kt. The 

thickness h of the bonding layer occurs only in the effective 

shear modulus ./ hKK t

ef

t  However, it is convenient to 

introduce the non-dimensional displacement discontinuity

)/( BA

e

I

e

I hhuu  . Then the relation (2) can be expressed as 

follows

and for the boundary conditions
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To find the mechanical fields the Eq. (9) with the boundary 

conditions should be solved, as presented in Table I. Fig. 4a) 

shows the example of the mechanical field distributions for 

not cracked bi-layer under stress tensile conditions.  

Let us now consider a brittle fracture of the layer A with 
C

A  indicating the strength in tension. As it is seen in Fig. 4a) 

the maximum value of normal stress is attained along the 

entire middle zone. 

 

 
Fig. 4. The stress fields under stress condition, SBC for (a) one segment (b) 

four segments. The displacement fields for (c) one segment (d) four segments. 

The shear stress fields for (e) one segment (f) four segments. 

 

TABLE II: THE EXPRESSION FOR ELASTIC STRESS, STRAIN AND 

DISPLACEMENTS IN DIMENSIONLESS PARAMETERS FOR SUBSTRATE LOADING 

AND 2N SEGMENTS 

 
 

So, it is assumed that this is the place where the fracture 

occurs. It means that the maximum stress is always in the 

middle of each coating’s fragment. Then, a new boundary 

condition is created and the stress field has to satisfy there the 

condition 0)0( e

A . The fragmentation process continues 

until no more critical stresses C

A  under a given loading are 

attained at any fragments of the plate A.  

Thus, the total number of fragments CRN2  may equal 
nN 222  , where 0n  according to Fig. 3b). The length of 

each fragment has been used with the non-dimensional stress 

boundary conditions (SBC) as 

0
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To find the mechanical fields the Eq. (9) with the above 

boundary conditions should be also solved for displacement 

boundary condition (DBC) as presented in Table II, when 

NuNLu e

B
/)/(

0
 is applied. Fig. 4b) shows the example of 

the mechanical field distributions for four segments of the 

layer A under stress tensile conditions.  

Then the condition that the maximal value of stress in the 

middle of each coating’s fragment can be formulated for SBC 

as 
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and for DBC as 
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Then the total number of the fragments is the smallest 

natural number 2N obtained for the applied stress, 
0 , as 
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d)  

Fig. 5. a)–c) Dependence between the maximal number of fragments CN2  

and applied stress. d) Change of the displacement on the corner specimen 

Lx   in the layer B after segmentation process under SBC. 

 

  

Fig. 6. Change of the stress on the corner specimen Lx   in the layer B 

after segmentation process under DBC. 

 

However, for DBC Eq. (10b) should be resolved 

numerically. 

Fig. 5a)-Fig. 5c) presents the total possible number of the 

coating fragments, 2N, depending on the loading parameter 
A

C /0
 for different material data. Fig. 5d) presents the 

change of the displacement on the corner specimen Lx   in 

the layer B after segmentation process under SBC. Let us note 

that the displacement is growing with growth of the 

segmentation process. It means that stiffness of the layer A 

decreases due to the cracking process. 

Fig. 6 presents the change of the stress on the corner 

specimen Lx   in the layer B after segmentation process 

under DBC. Let us note that the stress is decreasing with 

developing of the segmentation process. It means that 

stiffness of the layer A decreases also due to the cracking 

process. 

Based on the Eq. (10a) the initial relation C

AF  /Init

0  for 

beginning the fragmentation process (for N=1 and assumed 

that fragmentation is prevailing process) can be obtained for 

SBC as 
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and for DBC on the Eq. (10b) 
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where, F depends on the materials constants and the boundary 

conditions.  

It should be noted, that according to this model the 

fragmentation process can be unreally continued because the 

behavior of the interface is assumed to be ideally elastic.  

V. CONCLUSION 

The phenomenological model describing cracking under 

uniaxial tensile loading of brittle thin film on a deformable 

substrate with an elastic interface layer is considered. The 

presented analytical solution predicts the averaged crack 

density as a function of applied loading and materials 

parameters. The layer cracking modes are analyzed by 

applying the shear-lag approach. 
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