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Abstract—A constitutive model of progressive matrix 

cracking in fiber reinforced laminates is developed for the case 

of both membrane and flexural deformation. The analytical 

progressive damage model addresses both the degraded 

mechanical properties of the laminate for given levels of matrix 

cracking in individual plies, and the damage growth under 

applied loading. 

Crack densities in individual plies are the damage state 

variables of the model. This formulation is unlike the 

progressive damage models for composites implemented in 

most of the FEA packages, where softening laws are considered 

in order to describe stiffness reduction and damage evolution. 

By using the ply crack densities as state variables the model is 

able to predict and to keep track of the crack density in 

individual plies during the loading history, which can be of 

interest in application where the permeability (leakage) of the 

laminate is a limiting design factor. One example can be 

pressure vessels containing fluids or gases. Thermal residual 

stresses are taken into account in the present model, which 

extends the predictive capabilities of the model to applications 

in the range of cryogenic temperatures. 

The analytical model is validated against available 

experimental data for the case of both membrane and flexural 

loading. 

 
Index Terms—Composite material, matrix cracking, 

progressive damage. 

 

I. INTRODUCTION 

The characterization of composites has been an intensive 

field of research since their emergence as a new class of high 

performance structural materials. On one hand, the 

advantages offered by composite materials are very tempting, 

opening a large pool of choices for both new applications and 

alternative solutions for traditional applications, e.g., 

lightweight structures. On the other hand, the use of 

composite materials requires knowledge of limiting 

conditions under lifetime loading for each application, and 

this knowledge requires extensive amount of research. As a 

matter of fact, the same anisotropy and heterogeneity of the 

material properties that governs their unique behavior, also 

raises the complexity in quantifying and understanding the 

behavior and the properties. Thus, new experimental and 

analytical tools are constantly evolving to study composite 

materials. 
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Damage mechanisms such as fiber-matrix debonding, fiber 

breaking, fiber micro-buckling, matrix cracking, inter-ply 

delamination, follow different laws particular of the material 

structure and loading case. These modes can be catastrophic 

(i.e., structural failure) or not, but regardless of their primary 

structural impact, each one has to be very well understood 

and controlled. All of them can cause deterioration in the 

mechanical property and structural integrity, and in some 

cases they interact, as it is the case when a non-catastrophic 

damage mode may work as a nucleation point of a 

catastrophic damage mode.  

It is also the case that failure is defined not only 

considering the ultimate structural load carrying capacity, but 

also considering the functionality of the structure. In this way, 

some damage mode that is usually considered as 

non-catastrophic, e.g. matrix cracking can become a limiting 

one. This case can be best exemplified for the case of a 

pressure vessel: failure might be defined when the first crack 

appears and the structure stops meeting its functional 

requirements, i.e., containing the pressurized fluid or gas. 

Thus, matrix cracking can be regarded as a limiting mode of 

damage in some applications where it can constitute a path 

way for gas or liquid penetration, leading to exterior leakage 

or even the more difficult to detect fibers corrosion. The latter 

may induce weakening of fibers and ultimately fiber 

breakage.  
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The matrix cracking damage mode in laminated fiber 

reinforced polymers (FRP) has been studied extensively by 

the composite research community. The first analytical 

models were developed for the classical example of the 

[0m/90n]S cross-ply laminate [1]-[3], featuring cracks in the 

transverse central 90° plies. Then, the study was extended to 

more general cases, like: [S/90n]S laminates [3]-[6], where the 

letter S denotes a sub-laminate (not necessarily 0° orientation) 

that does not undergo matrix cracking under the considered 

loading case; [S/90/S/90/ . . . /S/90]S laminates, featuring 

matrix cracking in multiple transverse 90° plies; [S/θ1/θ2]S

laminates [7]-[9], where the loading case is such that matrix 

cracking develops in the two off-axis θ plies; [±θ/90n]s

laminates [10], [11], where matrix cracking can develop in 

both θ and 90°plies; [θ1/θ2/ . . . /θn]S laminates [12], [13], 

where matrix cracking can appear in all off-axis θ plies. A 

common limiting characteristic of these models is the fact 

that the laminate has to be symmetric, and to preserve the 

symmetry after damage onset. This constrain on the laminate 

configuration brings, in turn, a constrain on the loading case: 

flexural loading cannot be addressed, since in that case 

matrix cracking appears only in those plies loaded in tension, 

and the symmetry of the laminate is lost. Thus, most of the 

existing models in the literature deal only with symmetric 



  

laminates under in-plane loading. Very often, even this case 

is further constrained to uni-axial loading, in order to avoid 

generating damage in the aforementioned S sub-laminates. 

Models considering the flexural deformation are even rarer 

in the literature, and, in most of the cases, considering 

bending deformation brings additional restrictions on the 

level of generality and applicability of the solution. Again, 

only particular LSS can be addressed; or, due to some 

build--in modeling assumptions, all damaged plies must have 

the same matrix crack density, condition which cannot be 

satisfied if there are multiple cracking plies under flexural 

loading. 

Numerical solutions, especially the FEA method, can be an 

approach alternative to analytical models, for solving the 

complex 3D stress-strain fields, of the matrix cracking in 

laminated composites [14]-[16]. Theoretically it is possible 

to solve the problem of the reduced material properties by 

FEA method, but these detailed analyzes apply to particular 

laminate configurations. A parametric study using FEA is 

difficult to implement, involving multiple meshing. We also 

have to remember that a real problem, of a real structure 

considering loading, material properties and boundary 

conditions as required by the FEA method, becomes a double 

FEM problem. First of all, the whole structure is discretized 

and meshed to find the FEA solution for the considered 

loading case and boundary conditions. Then, when the 

resulting nonuniform stress field locally reaches the level of 

damage growth, a second FEA problem has to be solved, to 

provide the new (reduced) material properties at the laminate 

scale, for the corresponding extent of damage at the local (ply 

and material point) level. The double FEM problem 

continues for each of the external loading increments. The 

double meshing process becomes very cumbersome and 

expensive computationally. An easier way to solve the 

problem [17] consists of having an analytical solution for the 

problem of reduced material properties at a certain damage 

level (reduced material model), and for the problem of 

damage extent at a certain loading level (damage growth 

model). The analytical solution is then provided to the FEA 

problem of the real structure under loading and boundary 

conditions: the material properties of the individual finite 

element integration points are modified according to the 

analytical solution of the reduced material model and 

damage growth model. 

The objective of the work presented here is the 

development of an analytical model for matrix cracking 

progressive damage in composites of general laminate 

stacking sequence (LSS) under generalized 

membrane/flexural deformation. Both problems, the reduced 

material model and the damage growth model are addressed. 

There is no limitation on the configuration of the laminate or 

on the number of the cracking plies. Various other aspects 

that can influence the matrix cracking process are considered 

and included in the present model: the effect of thermal 

residual stress; the possible fracture modes I, II, or mixed I-II; 

the possibility of crack closure under flexural deformation; 

the experimentally observed strengthening of the material 

(i.e., increase resistance of the material to damage growth) 

with increasing damage level, usually referred to as 

Resistance-curve (R-curve) behavior; the in-situ constraining 

influence of the neighboring plies on the progressive damage 

of the cracking ply, and the influence of the thickness of the 

cracking ply on damage initiation and progression. 

 

 

 

The model aims to releasing the limiting assumptions used 

in previous models dealing with the same problem. The 

resulting analytical model is amenable to easy 

implementation in a FE formulation, as a nonlinear material 

behavior, which is able to predict the onset and evolution of 

matrix cracking damage in laminated composites, and to 

assess the effect of this damage mode on the material and 

structural response. 

 

II. ANALYTICAL MODEL FORMULATION 

The area of applicability of the model naturally comes 

from the main hypotheses under which the model is 

developed: 

 aligned long fiber reinforced laminated composites; matrix 

cracking takes place in individual plies along the fiber 

direction;  

 linear elastic material behavior up to damage onset; the 

possible material nonlinearity due to matrix plastic 

deformation is not considered; 

 brittle fracture behavior; there is no energy released for the 

formation of plastic zones; the progressive damage 

growth is modeled under the frame of linear elastic 

fracture mechanics (LEFM); 

 propagated cracks; one matrix crack suddenly develops 

and spans the whole width of the specimen; the 

progressive damage growth is rather a discrete process 

characterized by discrete fracture events, than a 

continuous one; 

 there is uniform spatial distribution of the propagated 

cracks in a ply affected by matrix cracking; cracks are 

equally spaced between them; 

 there is a strengthening effect (R-curve behavior) of the 

damage growth on the critical parameter, i.e., the critical 

strain energy release rate (ERR) Gc, characterizing the 

material resistance to crack growth; 

 the R-curve behavior features an in-situ nature (i.e., ply 

thickness dependency). 

The main ingredients and modules of the model, and the 

basic principles of how they work and interact together are 

described in the following: 

Reduced Material Properties  are approached through 

the COD-based material model in [14]. Here, the overall 

laminate thermo-elastic properties for a given damage level 

(crack density) in each ply of the laminate can be calculated; 

however, no information can be recovered with regard to 
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The proposed progressive damage model makes use of the 

following key ingredients: i) an appropriate COD- based 

reduced material model [14], [18]; ii) an energy based 

damage evolution criterion inspired by Fracture Mechanics;

iii) an homogenization technique inspired by CDM; iv) an 

iterative procedure in order to detect the conditions for 

damage growth in individual plies of the laminate, and to 

increase the damage level when the conditions are met; and v)

the Classical Laminate Theory (CLT) [19] in order to 

describe the overall membrane and flexural deformation of 

the laminated composite.



  

individual plies properties (ply reduced stiffness and ply 

reduced thermal expansion coefficients), which means that 

the reduced material model in [14] features a laminate 

formulation. For the present model, individual reduced plies 

properties are needed in order to calculate the strain energy 

required by the energy based damage evolution function. 

This fact is achieved by the iterative procedure of the model. 

A ply homogenization technique  inspired by the CDM. 

In this procedure, individual plies having a certain damage 

level (crack density) are regarded as fictitious homogenized 

materials having as effective thermo-elastic properties the 

properties of the cracked ply. Once the reduced ply properties 

are determined, individual ply cracks are not physically 

considered, but the ply cracks are rather regarded as being 

smeared through the volume of the ply. 

 

 

 

Classical Laminate Theory (CLT)  provides the overall, 

effective constitutive behavior of the laminate containing 

cracks in individual plies, provided that the homogenized, 

effective ply properties are known. 

As stated before, two main aspects have to be considered 

in order to perform progressive damage analysis of 

laminated composites. First, the reduction in the material 

thermo-elastic constants at a given damage level has to be 

evaluated; this aspect is regarded as the reduced material 

properties in the present model, and can be described by the 

relationship 

 
  ( )( )kC C                              (1) 

where [C] generically represents the thermo-elastic 

properties of the material, and   represents the state variable 

accounting for the damage level inside of the material. For 

the present model of intra-laminar matrix cracking, the 

damage variable is crack density (i.e., number of cracks per 

unit length 
( ) ( )

1/
k k

d  , where 
( )k

d  is the distance between 

two consecutive cracks inside of any ply (k) of the laminate. 

The second aspect is the prediction of the damage onset and 

progression due external thermo-mechanical loads applied to 

the laminate. This aspect is regarded as damage growth, and 

it can be represented by the relationship 

( ) ( ) ( )k k                          (2) 

where  generically represents the thermo-mechanical 

deformation of the laminate. 

 

III. LAMINATE REDUCED MATERIAL PROPERTIES 

The reduced material model in [14] is implemented in the 

present progressive damage model. For the uncracked 

material, a stress state 
( )

, , 1 3
k

ij i j   exists in each ply (k) 

of the laminate, for a given deformation state of the laminate. 

The stress state 
( )k

ij
  results in a corresponding vector 

( )
, 1 3

k

i
i   of surface tractions at the prospective 

location of the crack in each ply of the laminate, according to 

the Cauchy stress resultant formula of classical elasticity:  

 iji jn                                     (3) 

where 
j

n  is the vector of the direction cosines of the normal 

to the crack surface. Thus, the correspondence between the 

surface tractions 
i
  and the fracture mechanics damage 

modes is: i = 1-crack opening, i = 2-crack shearing or i = 

3-crack tearing. Due to the fact that cracks always appear 

along the fiber direction (i.e., the 1 direction in the c.s. of the 

ply), the normal direction n is always along the 2 transverse 

direction of the cracking ply. 

The average crack displacement of cracks in ply (k), 
( )k

i
u , 

represents the relative displacement between individual faces 

of the crack, corresponding to i=1,2,3 modes. The problem 

of 
( )k

i
u  is regarded as the superposition of two separate 

elasticity problems: first the surface tractions 
i
  on the 

prospective crack surface are calculated for the material 

regarded as uncracked; then the average crack displacement 

in ply (k) is considered as the result of the linear contribution 

of surface tractions in all plies of the 

laminate
( )

( 1 )
l

l N  , where N is the number of plies in 

laminate. In this way, the average crack displacement in ply 

(k) becomes 

 
( ) ( ) ( ) ( )

1

, , 1 3
N

k k kl l

i ij j

l

u t i j 


         (4) 

where 
( )k

t  is the ply thickness. It can be observed that the 

linear combination in (4) is made through the coefficients 
( )kl

 , which quantify the effect of surface traction in ply (l) 

on the COD in ply (k). The coefficients 
( )kl

ij
 , also called 

COD coefficients, are function of: (i) LSS configuration, (ii) 

ply material properties, and (iii) ply crack density (if cracks 

influence or not each other); they become now the new 

unknowns of the problem. The physical meaning of the 
( )kl

ij
 coefficients is not a direct intuitive one; they act as 
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An iterative procedure  meant to detect the damaging 

ply (k0) ply in the present notation) at a certain level of 

loading, according to the damage evolution criterion, and to 

allow the incremental increase in damage in this (k0) ply. 

Furthermore, after the (k0) ply is given one damage 

increment, the iterative procedure (also regarded as LSS 

iteration in the following) repeatedly iterates over the 

stacking sequence of the laminate at the same load level, in 

order to check for possible multiple increments in damage 

level of the same damaging ply (k0), or to check for multiple 

cracking plies at the same load level, due to stress 

redistribution after the damage level in the initial detected (k0)

ply is increased and the ply stiffness is accordingly reduced.

Damage Evolution  is approached through a fracture 

mechanics inspired Energy Release Rate criterion. The 

damaging ply (k0) is detected by the damage evolution 

criterion together with the iterative procedure, and the 

damage level is incrementally increased in this ply.



  

compliance between the surface tractions in ply (l), 
( )l

j
 , and 

the resulting COD in ply (k), 
( )k

i
u , in the linear combination 

in (4); they are similar to influence coefficients in [20, 

Appendix]. 

There is no direct analytical solution for the COD 

parameters 
( )kl

ij
  in (4) for laminated composites. At this 

point, the approximation of using COD analytical solutions 

to a closely related, yet different problem, i.e., the fracture 

mechanics problem of a row of cracks in an 

infinite/semi-infinite orthotropic plate, is proposed in 

[21]-[23]. The level of error introduced by this 

approximation is checked by comparing the output of the 

analytical model with experimental data and extensive FE 

simulations on a large variety of laminate types, and a good 

correlation is found. Moreover, for the cases where the 

fracture mechanics solution is not available, analytical laws 

of COD are obtained by extrapolating extensive parametric 

FE analyzes [22].  

Next, an energy balance equation between two equivalent 

instances of the cracked laminate is applied [14], [18]: 

First, the elastic energy 
c

W  stored in the composite material 

featuring matrix cracks is calculated as a linear elasticity 

superposition problem: 

 0cW W W 
                        

(5)
 

where 
0

W  is the elastic energy in the uncracked material, and 

W  is the change in the elastic energy due to advent of 

matrix cracks. The change in elastic energy W  is 

calculated based on the LEFM Irwin principle (which states 

that the energy released equals the mechanical work for crack 

closure) as the mechanical work done by the surface tractions 

i
  (3) at the prospective crack location, through the 

corresponding COD 
i

u (4). 

Second, the cracked laminate is considered in its effective 

(homogenized) instance, and the same 
c

W  in (5) is expressed 

in terms of effective (reduced) material properties ,
c c

C  : 

 ( , )c c c cW W C 
                         

(6)
 

where 
c

C  and 
c

  are the reduced stiffness and the reduced 

CTE of the cracked laminate, respectively. 

By identification of the two expressions (5) and (6) of the 

stored energy 
c

W  in the damaged material, the reduced 

thermo-elastic material properties ,
c c

C  can be calculated as 

closed form analytical solutions: 

      ( ) ( )

6 6 6 1
( ) , ( )k k

c c c cC C    
 

     
(7)

 

where 
( )k

  is the normalized crack density in each ply (k) (k 

= 1…N) of the laminate. The normalized crack density is 

defined as 
( ) ( ) ( ) ( ) ( )

/
k k k k k

t d t    ; the normalized 

crack density is a measure of ply damage level equivalent to 

the crack density 
( )k

  in eq. (1). The 6×6 and 6×1 subscripts 

in eq. (7) indicate that the reduced effective (laminate) 

material properties are for the case of combined membrane 

and flexural deformation. In classical notation of CLT, the 

reduced stiffness 
c

C in eq. (7) is the  ABD  

membrane-flexural stiffness matrix. 

This method, based on the concept of COD, provides a 

convenient closed form solution to the problem of reduction 

in material properties of the general [θ1/θ2/ . . . /θn]S laminate 

affected by matrix cracks in any of its plies. The main 

achievements of this approach is that the restriction on the 

number of cracking plies is released, and the whole set of 

thermo-elastic constants in eq. (7) can be evaluated, using as 

only input the uncracked plies properties and the crack 

density 
( )k

 in each ply of the laminate. A detailed derivation 

and explanation of the laminate reduced material model can 

be found in [14], [24].  

 

IV. PLY REDUCED MATERIAL PROPERTIES 

        
( 0) ( 0)

1

k k

i i i                              (8) 
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 


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(9)

 

 

where 
( 0)

[ ]
k

A and 
( 0)

{ }
k

E
 are respectively the effective 

(reduced) laminate in-plane stiffness matrix and the effective 

laminate in-plane vector of thermal effect coefficients, 

provided by the material model (7); 
, 0k k

 is the 

Kroneker-Delta function, which returns the value 1 if k = k0, 
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The thermo-elastic properties of individual plies affected 

by matrix cracking are calculated inside of the iterative 

procedure (or LSS iteration). First, at any given load 

increment, the iterative procedure checks for the cracking ply 

(noted (k0)) inside of the laminate; the cracking ply is 

identified as being the ply which first meets the condition of 

the damage evolution criterion in eq. (11). When a (k0) 

cracking ply is found, the crack density level in that ply is 

incrementally increased at a subsequent value

Then, the new effective laminate properties are calculated by 

the reduced material model (7). At this point, the iterative 

procedure provides a means of calculating the reduction in 

individual properties of the cracking ply (k0): considering 

that the reduction in effective laminate properties are only 

due to increasing the crack density in the (k0) ply, the new 

effective material properties of the ply (k0) are calculated 

through the CLT as



  

 

Regarding the increment in crack density   in eq. (8), 

different modeling approaches can be considered: an 

infinitesimal increase in crack density at each cracking event; 

a discrete increase in crack density corresponding to the 

formation of one more crack; or a discrete doubling in crack 

density. The progressive damage model proposed here uses 

the approach of 1 more crack discrete crack multiplication 

process, which provides the incremental value of crack 

density in eq. (8) [24], [25]. 

  1 02i i                        (10) 

where 
0

 is the initial starting value of the crack density, 

corresponding to an arbitrary initially very large crack 

spacing between preexisting cracks in all plies of the 

laminate, in the undamaged state. 

 

V. PROGRESSIVE DAMAGE 

A damage evolution criterion is required in order to detect 

the conditions for matrix crack multiplication in individual 

plies of the laminate under loading. In the present 

formulation, a fracture mechanics inspired criterion [26] is 

selected, in order to consider mixed modes crack formation 

for the case of matrix cracking under general in-plane and 

flexural deformation. 

 ( 0) ( 0) ( 0)

( 0) 1 1 0
k k k

Ic I I II
k

IIc Ic IIc IIc

G G G G
g

G G G G

 
      
 

 (11) 

 

 

 

 U
G

A


 

                             
 (12) 

where U  is the strain energy released by the new crack 

formation, and A  is the new formed crack area. The strain 

energy released due to incremental crack multiplication is 

calculated as the difference between the two instances of the 

material, before and after crack growth: 
after before

U U U   . 

For the calculation of the strain energy before/after crack 

multiplication, and the partition of the total strain energy in 

modes I/II crack growth [27] as required by the crack growth 

criterion in eq. (11), the strain energy density stored in the ply 

(k) of the laminate is written as 

 

   ( ) ( ) ( ) ( )

0

1

2

T
k k k kU Q             (13) 
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 
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I

kk
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   

 

 



 
 



              (14) 

These mode components are then used for the calculation 

of strain energy density in eq. (13), and the strain energy of 

the whole laminate for crack formation in the cracking ply 

(k0) is then expressed as the summation of the available strain 

energy in each ply (k), 
( 0) ( )

/ /1

Nk k

I II I IIk
U U


 . 

The effect of the thermal residual stresses in the laminate, 

which are the result of cool-down after curing and the 

thermal expansion coefficient mismatch between different 

plies of the laminate, is included in the model by considering 

in eq. (13) the strain quantity that effectively gives strain 

energy of deformation in ply (k) 

 
( ) ( ) ( )k k k

tot T                        (15) 

 

where 
( )k

tot
  represents the  total deformation of ply (k), due to 

both mechanical and thermal loading. 

The bending deformation is included by considering the 

linear variation of strain over the laminate thickness 
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or value 0 if k ≠ k0. It has to be noted that the values
( 0)

[ ]
k

A , 

( 0)
{ }

k

E
 are overall laminate properties; the subscript (k0) has 

been used for them only to indicate that they are calculated 

due to a crack multiplication in (k0) ply only.

After both effective laminate properties (7), and the 

effective ply properties (9) are calculated, the iterative 

procedure is resumed in order to check for other cracking 

plies at the same level of loading, or for multiple crack 

increments (8) for the same cracking ply (k0). The iteration 

stops when no ply meets the condition in the damage 

evolution criterion.

where 
( )k

 is the vector of the strain components of the ply 

(k), written in global (laminate) c.s. However, the 
( 0)

/

k

I II
G in eq. 

(11) represent the I/II modes components of ERR of the 

laminate due to crack multiplication in the ply (k0), where 

strain energy contribution from all plies (k) to the crack 

multiplication in ply (k0) is taken into account. For this, the 
( )k

 strain of ply (k) is first transformed to the c.s. of the 

cracking ply (k0), and then separated in components 

corresponding to the ERR for modes I and II crack 

multiplication in ply (k0)

( 0) ( 0)
,

k k

I IIG G are energy release rates due to modes I, II

crack propagation in the ply (k0) of the laminate. Even if 
( 0)

,

k

I IIG are calculated at global level of the laminate, 

considering the contribution of all (k) plies to the energy 

released due to crack growth in the current (k0) cracking ply, 

subscripts (k0) are used in eq. (11) in order to emphasize that 

energy release rates are evaluated due to damage 

multiplication in the current cracking ply (k0) only. 

,
Ic IIc

G G are critical values of the energy release rates, or the 

material resistance to modes I and II crack propagation; 

Ic
G and

Ic
G are regarded as material properties whose 

evaluation is based on experiments.

For displacement control conditions, the strain ERR, G , is



  

 
( ) (0)k

tot tot totz k                       (16) 

The crack closure effect, that has to be accounted for in 

flexural deformation, is considered according to the sign of 

the transverse stress in ply (k) 

 

  ( )

0 22( )

1 ( )

22

crack is open (active)

crack is close (pasive)

if

if

2 0 ;

0 0 ;

k

k

i k

i  





 








 (17) 

The experimentally observed R-curve behavior of the 

material resistance to crack multiplication [28] is also 

implemented in the present model. This phenomenon, that is 

specific to laminated composites, means an increasing 

resistance 
c

G of the material to crack growth with increasing 

damage level; it is attributed to the fiber bridging effect [29] 

during matrix crack multiplication process. According to this 

effect, the critical ERR in eq. (11) becomes ( )
c c

G G  , 

where  is the current damage level (crack density) of the ply. 

Moreover, for laminated composites there is also a thickness 

dependence of 
c

G  [28], which is denoted in this model as the 

in-situ R-curve behavior. According to this, the critical ERR 

becomes ( , )
c c

G G t [24], [25]. In this work, only mode I 

critical SEER is accounted for the in-situ R-curve effect; for 

mode II, a constant value of 
c

G is used, due to lack of 

experimental data. 

A first set of matrix cracking onset and multiplication 

experimental data, for a reference laminate having a cracking 

ply of thickness 
ref

t t , is used to adjust the R-curve 

behavior of the reference laminate, which is modeled by the 

equation 

 
 ,0( , ) tanref ref ref

Ic ref Ic IcG t t G G         (18) 

where 
,0

ref

Ic
G  critical ERR for  onset of damage (the advent of 

the first matrix cracking), and 
ref


  is a parameter that 

describes the rate of damage growth, with 0 90
ref


  . 

Both 
,0

ref

Ic
G  and 

ref


  parameters are identified by reduction 

of experimental data of the reference laminate. 

A second set of matrix cracking onset and multiplication 

experimental data, for a laminate having a cracking ply of 

thickness
ref

t t , is considered next, in order to capture the 

in-situ (thickness) effect of the fracture toughness. Based on 

this, the onset fracture toughness is modeled as 

 

 ,0 ,0 0( ) 1 1 1ref t

Ic Ic

ref

t
G t G

t


  
       

   

      (19) 

where 
0

t
  is an in-situ onset reduction data parameter, with 

0
1 2

t
  . Finally, the in-situ R-curve of the given material 

can be modeled based on the equation 

 

   

,0( , ) ( )

1 1 1 tan

Ic Ic

t ref

ref

G t G t

t

t
 



  

 

  
       

 
   

           
(20) 

where 
t


  is an in-situ growth reduction data parameter, with 

1 2
t


  . 

The output of the progressive matrix cracking analytical 

model is: 

 the reduced material properties of the laminate as a function 

of damage level in any ply (k): 
( )

( )
k

C C  ; 

 the curve of damage multiplication under external loading 

for each ply (k) of the laminate: 
( ) ( )

( )
k k

  
; 

 the curve of reduction in thermo-elastic properties of the 

laminated composite under external loading: ( )C C  ; 

 the nonlinear constitutive stress--strain behavior of the 

laminate material: ( )   . 

 

VI. RESULTS AND CONCLUSIONS 

The progressive damage matrix cracking experimental 

results presented in [18] are used here for the validation of the 

analytical model predictions. The material is a Glass/Epoxy 

Fibredux 913G-E-5-30% system, having the following 

thermo-elastic properties of individual plies: E1 = 34 GPa, E2 

= 18 GPa, G12 = 7.9 GPa, ν12 = 0.29, ν23 = 0.41, α1 = 

6.72×10-6 °C, α2 = 29.3×10-6 °C. The ply thickness is tk = 

0.125 mm, and the processing temperature (stress free 

temperature) is SFT = 125 °C. Two experimental data sets, 

namely [0/90/0] and [0/902/0] are used for the calculation of 

the in-situ R-curve parameters, yielding the following values: 

,0

ref

IcG  = 0.2 N/mm, 
ref

 = 0 deg, 0

t  = 1, 
t

  = 1. 

 

 
Fig. 1. Variation of normalized Young modulus with crack density; 

experimental data from [18]. 

 

A first set of experimental results is presented in [18] for 

the [0/90n/0] LSS under uniaxial extension
x

 . Reduced 

material properties of the laminate are presented in Fig. 1, 2, 

for the Young modulus and Poisson ratio, respectively. Good 

agreement between analytical and experimental results can 

be noticed in the two plots. However, it can also be noticed 

the model tendency of predicting a lower slope of the 
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analytical trend compared to the experimental trend, at high 

values of the crack density  , especially for high thickness 

of the cracking plies. The matrix cracking evolution curves 

are presented in Fig. 3. Again, the least favorable match of 

the experimental data can be noticed for the thick cracking 

plies, at high crack densities. 

 
Fig. 2. Variation of normalized Poisson ratio with crack density; 

experimental data from [18]. 

 

 
Fig. 3. Variation of crack density with applied strain; experimental data from 

[18]. 

Stress-strain curves featuring nonlinearities due to matrix 

cracking are shown in Fig. 4, where good agreement between 

analytical and experimental results is obtained. The least 

favorable correlation is obtained for the [0/908/0] laminate 

featuring the thickest cracking ply, which is in connection 

with the least favorable correlation of damage evolution 

curve in Fig.3. This deteriorating predicting capability of the 

model at high thickness of the cracking ply could be due to 

the so called transition thickness effect, experimentally 

noticed for laminated composites: there is a certain thickness 

(i.e., the transition thickness) of the ply, over which the strain 

at matrix cracking onset remains constant. 

Experimental data for matrix cracking under flexural 

loading is very rare in the literature. A set of such data is 

presented in [18], for the LSS [902/02/-452/452]S and 

[902/-452/452]S. The curves of distributed bending 

moment-curvature (which are the equivalent of the 

stress-strain plots for the case of extension loading) are 

presented in Fig. 5, where good agreement between 

analytical predictions and experiments can be noticed. 

Model prediction for combined extension-bending loading 

x x
k  is presented in Fig. 6. The LSS considered for this 

case is 
2 3

[0 / 90 / 0 / 90 / 0]
S

. Without using the symmetry 

notation, the laminate is denoted 

as
(1) (1) (2) (2)

2 3 2 3 2
[0 / 90 / 0 / 90 / 0 / 90 / 0 / 90 / 0] ; the superscripts 

(1) denotes plies at the bottom of the LSS (which would be 

under compression if only bending deformation was applied), 

and the superscripts (2) denotes plies at the top of the LSS 

(which would be under tension if only bending deformation 

was applied). The applied loading is simultaneous extension 

x
 and bending 

x
k , under displacement control; the ratio of 

the two applied incremental deformations is 0.5
x x

k   for 

the present study. 

 

 
Fig. 4. Non-linear stress-strain curves due to matrix cracking; experimental 

data from [18]. 

 

 
Fig. 5. Non-linear distributed bending moment vs. curvature due to matrix 

cracking; experimental data from [18]. 

 

It can be observed in Fig. 6 that the cracking process 

initiates almost simultaneous in the top 
( 2)

2
90 and 

( 2)

3
90 plies, 

due to combined effect of ply thickness and bending 

deformation. Regarding the damage process in the bottom 
(1)

2
90 and 

(1)

3
90 plies, it can be observed that there is matrix 

cracking in the 
(1)

3
90 ply, and there is no matrix cracking in 

the 
(1)

2
90 ply. The extensional strain exceeds the negative 

bending strain due to bending in both plies. However, there is 

more net strain in the 
(1)

3
90 ply than in the 

(1)

2
90 ply because of 

their position in the LSS, and the 
(1)

3
90  is weaker because it is 

thicker (in-situ effect). This is the reason why matrix 
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cracking appears in the 
(1)

3
90 ply and it does not appear in the 

(1)

2
90 ply. 

In conclusion, the present model for progressive matrix 

cracking of general laminates, under combined 

membrane-flexural deformation, accounts for multiple 

aspects of the problem: the effect of thermal residual stresses, 

the crack closure effect in bending, and the in-situ R-curve 

effect. Two experimental data sets of damage growth, for two 

laminate configurations of the same material system, are 

needed in order to fit the R-curve parameters; then, the model 

is able to predict damage onset and evolution for other LSS. 

There is no limitation on the configuration of the laminate or 

on the number of the cracking plies, as it is the case of the 

most models available in the literature, where only symmetric 

LSS are addressed, or only certain plies can undergo matrix 

cracking. The trends output by the analytical model, as well 

the comparison against experimental data, provides 

confidence in the predicting capabilities on the proposed 

model. 

 
Fig. 6. Analytical variation of crack density for combined membrane-flexural 

loading. 
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