• Jul 12, 2018 News![CFP] 2019 the annual meeting of IJMMM Editorial Board, ECMMM 2019, will be held in Amsterdam, Netherlands during February 16-18, 2019.   [Click]
  • Feb 26, 2018 News!'Writing Tips' shared by Prof. Ian McAndrew!   [Click]
  • Nov 22, 2018 News!Papers published in Vol.6, No.5-No.6 have all received dois from Crossref.
General Information
    • ISSN: 1793-8198
    • Frequency: Quarterly
    • DOI: 10.18178/IJMMM
    • Editor-in-Chief: Prof. K. M. Gupta, Prof. Ian McAndrew
    • Executive Editor: Ms. Cherry L. Chen
    • Abstracting/Indexing: EI (INSPEC, IET), Chemical Abstracts Services (CAS),  ProQuest, Crossref, Ulrich's Periodicals Directory,  etc.
    • E-mail ijmmm@ejournal.net
Editor-in-chief
Prof. Ian McAndrew
Capitol Technology University, USA
It is my honor to be the editor-in-chief of IJMMM. I will do my best to help develop this journal better.

IJMMM 2013 Vol.1(1): 13-16 ISSN: 1793-8198
DOI: 10.7763/IJMMM.2013.V1.3

Prediction of Cutting Force and Tool Deflection in Micro Flat End Milling

Hye-Ri Gye, Byeong-Uk Song, Yong-Seok Lim, Yong-Wook Shin, Sung-Hui Jang, and Tae-Il Seo
Abstract—This paper presents an investigation of prediction of cutting force and tool deflection in micro flat end milling. To predict cutting forces specific cutting force coefficients KT and KR were used. In fact, various cutting forces prediction models were proposed in past researches for conventional sized machining processes. However, micro end-milling processes were known as different phenomenon as respect to macro end-milling. Many past researches concerned complicated different models for micro end-milling from macro end-milling. However, cutting force models for both macro and micro end milling were fundamentally based on measured cutting forces for a series of experimental machining processes. Then, cutting force model proposed by Tlusty, which was developed for macro end-milling, was applied for micro flat end milling because this model is relatively simple. Finite element method was used to predict tool deflection based on predicted cutting forces. Predicted tool deflection amounts and actual machined profiles were compared each other in order to check out the differences between them.

Index Terms—Cutting force, micro end-mill, finite element method, tool deflection.

The authors are with the Major of Mechanical Engineering and Robotics in Division of Mechanical System Engineering at the University of Incheon, Incheon 406-772 Korea (e-mail: {ghr0114, mempisto, iys1987, yonggal1101, jsh2375, tiseo}@incheon.ac.kr).

[PDF]

Cite:Hye-Ri Gye, Byeong-Uk Song, Yong-Seok Lim, Yong-Wook Shin, Sung-Hui Jang, and Tae-Il Seo, "Prediction of Cutting Force and Tool Deflection in Micro Flat End Milling," International Journal of Materials, Mechanics and Manufacturing vol. 1, no. 1, pp. 13-16, 2013.

Copyright © 2008-2018. International Journal of Materials, Mechanics and Manufacturing. All rights reserved.
E-mail: ijmmm@ejournal.net