• Feb 26, 2018 News!'Writing Tips' shared by Prof. Ian McAndrew!   [Click]
  • Mar 06, 2018 News!IJMMM Vol.6, No.4 has been published with online version. 15 peer reviewed articles are published in this issue.   [Click]
  • Dec 29, 2017 News!The submission for 2018 2nd European Conference on Materials, Mechatronics and Manufacturing was over on December 25, 2017.
General Information
    • ISSN: 1793-8198
    • Frequency: Quarterly
    • DOI: 10.18178/IJMMM
    • Editor-in-Chief: Prof. K. M. Gupta, Prof. Ian McAndrew
    • Executive Editor: Ms. Cherry L. Chen
    • Abstracting/Indexing: EI (INSPEC, IET), Chemical Abstracts Services (CAS),  ProQuest, Crossref, Ulrich's Periodicals Directory,  etc.
    • E-mail ijmmm@ejournal.net
Prof. Ian McAndrew
Embry Riddle Aeronautical University, UK.
It is my honor to be the editor-in-chief of IJMMM. I will do my best to help develop this journal better.

IJMMM 2013 Vol.1(1): 41-45 ISSN: 1793-8198
DOI: 10.7763/IJMMM.2013.V1.9

Exergy Analysis of Organic Rankine Cycle with Internal Heat Exchanger

Kyoung Hoon Kim, Hyung Jong Ko, and Se Woong Kim
Abstract—In recent years Organic Rankine Cycle (ORC) has become a field of intense research and appears a promising technology for conversion of heat into useful work or electricity. In this work thermodynamic performance of ORC with internal heat exchanger is comparatively assessed for various working fluids based on the second law of thermodynamics. Special attention is paid to the effect of turbine inlet pressure on the exergy destructions (anergies) at various system components and the exergy efficiency of system. Results show that for a given source the component at which the greatest anergy occurs differs with working fluid. As turbine inlet pressure increases, exergy efficiency increases for working fluid such as ammonia or R22, but decreases for working fluid with low critical pressure such as iso-pentane or n-pentane.

Index Terms—Organic rankine cycle (ORC), internal heat exchanger, exergy, anergy.

The authors are with the Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Korea (e-mail: {khkim, kohj, ksw}@ kumoh.ac.kr).


Cite:Kyoung Hoon Kim, Hyung Jong Ko, and Se Woong Kim, "Exergy Analysis of Organic Rankine Cycle with Internal Heat Exchanger," International Journal of Materials, Mechanics and Manufacturing vol. 1, no. 1, pp. 41-45, 2013.

Copyright © 2008-2018. International Journal of Materials, Mechanics and Manufacturing. All rights reserved.
E-mail: ijmmm@ejournal.net